The linear absorption spectra and absolute resonance Raman excitation profiles of the “push-pull” chromophore julolidinemalononitrile have been measured in cyclohexane, 1,4-dioxane, dichloromethane, acetonitrile, and methanol solution at excitation wavelengths spanning the strong visible charge-transfer absorption band. Numerical simulation of the spectra using time-dependent wave-packet propagation methods yields the excited-state geometry changes along the ∼15 strongly Raman-active vibrations as well as the solvent reorganization energies. The distribution of the total vibrational reorganization energy among the various normal modes is solvent dependent, indicating solvent polarity effects on the electronic structure. These results are compared with those previously obtained for two other push-pull chromophores, p-nitroaniline and julolidinyl-n-N,N-diethylthiobarbituric acid. The frequency dispersion of the molecular first hyperpolarizability, β, is also calculated in each solvent using a time-domain form of the standard Oudar–Chemla two-state model modified to incorporate solvent reorganization, inhomogeneous broadening, and the vibronic structure of the charge-transfer state. We show that accurate extrapolation of β measured at frequencies in the near-infrared to zero frequency requires a realistic description of the excited state as the measuring wavelength approaches a two-photon resonance. This is particularly relevant to the high chromophore concentrations needed for device applications, where intermolecular interactions can strongly perturb the electronic transitions.

1.
M. H.
Davey
,
V. Y.
Lee
,
L.-M.
Wu
,
C. R.
Moylan
,
W.
Volksen
,
A.
Knoesen
,
R. D.
Miller
, and
T. J.
Marks
,
Chem. Mater.
12
,
1679
(
2000
).
2.
Y.-C.
Shu
,
Z.-H.
Gong
,
C.-F.
Shu
,
E. M.
Breitung
,
R. J.
McMahon
,
G.-H.
Lee
, and
A. K.-Y.
Jen
,
Chem. Mater.
11
,
1628
(
1999
).
3.
Organic Nonlinear Optical Materials and Devices, edited by B. Kippelen, H. S. Lackritz, and R. O. Claus (Materials Research Society, Warrendale, PA, 1999), Vol. 561.
4.
V.
Alain
,
S.
Rédoglia
,
M.
Blanchard-Desce
,
S.
Lebus
,
K.
Lukaszuk
,
R.
Wortmann
,
U.
Gubler
,
C.
Bosshard
, and
P.
Günter
,
Chem. Phys.
245
,
51
(
1999
).
5.
A. W.
Harper
,
S.
Sun
,
L. R.
Dalton
,
S. M.
Garner
,
A.
Chen
,
S.
Kalluri
,
W. H.
Steier
, and
B. H.
Robinson
,
J. Opt. Soc. Am. B
15
,
329
(
1998
).
6.
Molecular Nonlinear Optics: Materials, Physics, and Devices, edited by J. Zyss (Academic, Boston, 1993).
7.
D. R.
Kanis
,
M. A.
Ratner
, and
T. J.
Marks
,
Chem. Rev.
94
,
195
(
1994
).
8.
Y.
Shi
,
C.
Zhang
,
H.
Zhang
,
J. H.
Bechtel
,
L. R.
Dalton
,
B. H.
Robinson
, and
W. H.
Steier
,
Science
288
,
119
(
2001
).
9.
H.
Zhang
,
M.-C.
Oh
,
A.
Szep
,
W. H.
Steier
,
C.
Zhang
,
L. R.
Dalton
,
H.
Erlig
,
Y.
Chang
,
D. H.
Chang
, and
H. R.
Fetterman
,
Appl. Phys. Lett.
78
,
3136
(
2001
).
10.
A.
Painelli
,
Chem. Phys.
245
,
185
(
1999
).
11.
M.
Blanchard-Desce
and
M.
Barzoukas
,
J. Opt. Soc. Am. B
15
,
302
(
1998
).
12.
D. M.
Bishop
,
B.
Champagne
, and
B.
Kirtman
,
J. Chem. Phys.
109
,
9987
(
1998
).
13.
M.
Stähelin
,
B.
Zysset
,
M.
Ahlheim
,
S. R.
Marder
,
P. V.
Bedworth
,
C.
Runser
,
M.
Barzoukas
, and
A.
Fort
,
J. Opt. Soc. Am. B
13
,
2401
(
1996
).
14.
C.
Castiglioni
,
M.
Del Zoppo
, and
G.
Zerbi
,
Phys. Rev. B
53
,
13319
(
1996
).
15.
D.
Lu
,
B.
Marten
,
Y.
Cao
,
M. N.
Ringnalda
,
R. A.
Friesner
, and
W. A.
Goddard
III
,
Chem. Phys. Lett.
242
,
543
(
1995
).
16.
S. R.
Marder
,
L.-T.
Cheng
,
B. G.
Tiemann
,
A. C.
Friedli
,
M.
Blanchard-Desce
,
J. W.
Perry
, and
J.
Skindhøj
,
Science
263
,
511
(
1994
).
17.
W. H.
Thompson
,
M.
Blanchard-Desce
,
V.
Alain
,
J.
Muller
,
A.
Fort
,
M.
Barzoukas
, and
J. T.
Hynes
,
J. Phys. Chem. A
103
,
3766
(
1999
).
18.
V.
Chernyak
,
S.
Tretiak
, and
S.
Mukamel
,
Chem. Phys. Lett.
319
,
261
(
2000
).
19.
J. L.
Oudar
and
D. S.
Chemla
,
J. Chem. Phys.
66
,
2664
(
1977
).
20.
C. H.
Wang
,
J. Chem. Phys.
112
,
1917
(
2000
).
21.
G.
Berkovic
,
G.
Meshulam
, and
Z.
Kotler
,
J. Chem. Phys.
112
,
3997
(
2000
).
22.
D.
Lu
,
G.
Chen
,
J. W.
Perry
, and
W. A.
Goddard
III
,
J. Am. Chem. Soc.
116
,
10679
(
1994
).
23.
G.
Chen
,
D.
Lu
, and
W. A.
Goddard
III
,
J. Chem. Phys.
101
,
5860
(
1994
).
24.
W. H.
Thompson
,
M.
Blanchard-Desce
, and
J. T.
Hynes
,
J. Phys. Chem. A
102
,
7712
(
1998
).
25.
A. M.
Moran
and
A. M.
Kelley
,
J. Chem. Phys.
115
,
912
(
2001
).
26.
A. M.
Moran
,
C.
Delbecque
, and
A. M.
Kelley
,
J. Phys. Chem. A
,
105
,
10208
(
2001
).
27.
A. B.
Myers
,
J. Raman Spectrosc.
28
,
389
(
1997
).
28.
A. B. Myers, in Laser Techniques in Chemistry, edited by A. B. Myers and T. R. Rizzo (Wiley, New York, 1995), p. 325.
29.
M.
Blanchard-Desce
,
R.
Wortmann
,
S.
Lebus
,
J.-M.
Lehn
, and
P.
Krämer
,
Chem. Phys. Lett.
243
,
526
(
1995
).
30.
M.
Lilichenko
,
D.
Tittelbach-Helmrich
,
J. W.
Verhoeven
,
I. R.
Gould
, and
A. B.
Myers
,
J. Chem. Phys.
109
,
10958
(
1998
).
31.
B.
Li
,
A. E.
Johnson
,
S.
Mukamel
, and
A. B.
Myers
,
J. Am. Chem. Soc.
116
,
11039
(
1994
).
32.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
33.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998.
34.
A. B. Myers and R. A. Mathies, in Biological Applications of Raman Spectroscopy, edited by T. G. Spiro (Wiley, New York, 1987), Vol. 2, p. 1.
35.
CRC Handbook of Chemistry and Physics, 73rd ed. (Chemical Rubber Company, Boca Raton, FL, 1992).
36.
A. M. Kelley (unpublished).
37.
M.
Stähelin
,
D. M.
Burland
, and
J. E.
Rice
,
Chem. Phys. Lett.
191
,
245
(
1992
).
38.
V. M.
Farztdinov
,
R.
Schanz
,
S. A.
Kovalenko
, and
N. P.
Ernsting
,
J. Phys. Chem. A
104
,
11486
(
2000
).
39.
M.
Blanchard-Desce
,
V.
Alain
,
P. V.
Bedworth
,
S. R.
Marder
,
A.
Fort
,
C.
Runser
,
M.
Barzoukas
,
S.
Lebus
, and
R.
Wortmann
,
Chem.-Eur. J.
3
,
1091
(
1997
).
40.
M.
Cho
,
J. Phys. Chem. A
102
,
703
(
1998
).
41.
A.
Painelli
and
F.
Terenziani
,
Chem. Phys. Lett.
312
,
211
(
1999
).
42.
Y.
Zong
and
J. L.
McHale
,
J. Chem. Phys.
106
,
4963
(
1997
).
43.
Y.
Zong
and
J. L.
McHale
,
J. Chem. Phys.
107
,
2920
(
1997
).
44.
T.
Yamaguchi
,
Y.
Kimura
, and
N.
Hirota
,
J. Chem. Phys.
107
,
4436
(
1997
).
45.
T.
Yamaguchi
,
Y.
Kimura
, and
N.
Hirota
,
J. Chem. Phys.
109
,
9075
(
1998
).
46.
T.
Yamaguchi
,
Y.
Kimura
, and
N.
Hirota
,
J. Chem. Phys.
109
,
9084
(
1998
).
47.
A.
Painelli
and
F.
Terenziani
,
J. Phys. Chem. A
104
,
11041
(
2000
).
48.
W. Rettig, in Electron Transfer I, Topics in Current Chemistry, Vol. 169, edited by J. Mattay (Springer, New York, 1994), p. 253.
49.
Z. A.
Dreger
,
J. M.
Lang
, and
H. G.
Drickamer
,
Chem. Phys.
169
,
351
(
1993
).
50.
J. M.
Lang
,
A. A.
Dadali
, and
H. G.
Drickamer
,
Chem. Phys. Lett.
214
,
310
(
1993
).
51.
Z. A.
Dreger
,
J. O.
White
, and
H. G.
Drickamer
,
Chem. Phys. Lett.
290
,
399
(
1998
).
52.
R. O.
Loutfy
and
B. A.
Arnold
,
J. Phys. Chem.
86
,
4205
(
1982
).
53.
R. O.
Loutfy
and
D. M.
Teegarden
,
Macromolecules
16
,
452
(
1983
).
54.
A. B.
Myers
and
R. A.
Mathies
,
J. Chem. Phys.
81
,
1552
(
1984
).
55.
A. B.
Myers
,
M. O.
Trulson
, and
R. A.
Mathies
,
J. Chem. Phys.
83
,
5000
(
1985
).
56.
M.
Ahlheim
,
M.
Barzoukas
,
P. V.
Bedworth
et al.,
Science
271
,
335
(
1996
).
57.
I.
Liakatas
,
C.
Cai
,
M.
Bösch
,
M.
Jäger
,
C.
Bosshard
,
P.
Günter
,
C.
Zhang
, and
L. R.
Dalton
,
Appl. Phys. Lett.
76
,
1368
(
2000
).
58.
B.
Paci
,
C.
Schmidt
,
C.
Fiorini
, and
J.-M.
Nunzi
,
J. Chem. Phys.
111
,
7486
(
1999
).
59.
Sandalphon
,
J. F.
Wang
,
B.
Kippelen
, and
N.
Peyghambarian
,
Appl. Phys. Lett.
71
,
873
(
1997
).
60.
B.
Kippelen
,
Sandalphon
,
K.
Meerholz
, and
N.
Peyghambarian
,
Appl. Phys. Lett.
68
,
1748
(
1996
).
61.
C. R.
Moylan
,
R.
Wortmann
,
R. J.
Twieg
, and
I.-H.
McComb
,
J. Opt. Soc. Am. B
15
,
929
(
1998
).
62.
S. F.
Hubbard
,
R. G.
Petschek
, and
K. D.
Singer
,
Opt. Lett.
21
,
1774
(
1996
).
63.
C. C.
Teng
and
A. F.
Garito
,
Phys. Rev. Lett.
50
,
350
(
1983
).
64.
P.
Kaatz
and
D. P.
Shelton
,
J. Chem. Phys.
105
,
3918
(
1996
).
65.
J. N.
Woodford
,
C. H.
Wang
,
A. E.
Asato
, and
R. S. H.
Liu
,
J. Chem. Phys.
111
,
4621
(
1999
).
66.
C.-C.
Hsu
,
S.
Liu
,
C. C.
Wang
, and
C. H.
Wang
,
J. Chem. Phys.
114
,
7103
(
2001
).
67.
C. H.
Wang
,
J. N.
Woodford
,
C.
Zhang
, and
L. R.
Dalton
,
J. Appl. Phys.
89
,
4209
(
2001
).
68.
S. R.
Vigil
and
M. G.
Kuzyk
,
J. Opt. Soc. Am. B.
18
,
679
(
2001
).
69.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
95
,
2646
(
1991
).
70.
B.
Champagne
,
Chem. Phys. Lett.
261
,
57
(
1996
).
71.
H.-S.
Kim
,
M.
Cho
, and
S.-J.
Jeon
,
J. Chem. Phys.
107
,
1936
(
1997
).
72.
B. H.
Robinson
et al.,
Chem. Phys.
245
,
35
(
1999
).
73.
P.
Wang
,
P.
Zhu
,
C.
Ye
,
A. E.
Asato
, and
R. S. H.
Liu
,
J. Phys. Chem. A
103
,
7076
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.