The SAC-CI method was applied to the electronic excitation spectra of Cl2O, ClOOCl, and F2O. The ensuing theoretical spectra have well reproduced the experimental spectra for Cl2O and Cl2O2 and detailed characterizations of the peaks and structures were given by calculating the oscillator strength, second moment, and dipole moment for each state. For the UV region of Cl2O, the observed peaks were assigned to the valence excited states in agreement with the previous theoretical studies. For the VUV region, in the present study we have proposed the first theoretical assignments. Both valence and Rydberg excited states were calculated in this energy region, some of which resulted different from the experimental assignments. For Cl2O2, the broad band of the experimental spectrum was mainly attributed to one intense peak due to the 3B state. The theoretical spectrum above 6 eV was proposed, which so far has not been addressed and clarified before. The excitation spectrum of F2O up to about 13.0 eV was calculated and compared with the previous theoretical study. The shape and main features of the calculated spectrum was found to be very similar to that of Cl2O, and the valence and Rydberg excited states were clearly discriminated.

1.
R. A.
Cox
and
G. D.
Hayman
,
Nature (London)
332
,
796
(
1988
).
2.
W. B.
De More
and
E.
Tshuikow-Roux
,
J. Phys. Chem.
94
,
5856
(
1990
).
3.
J. B.
Burkholder
,
J. J.
Orlando
, and
C. J.
Howard
,
J. Phys. Chem.
94
,
687
(
1990
).
4.
K. J.
Huder
and
W. B.
De More
,
J. Phys. Chem.
99
,
3905
(
1995
).
5.
W. B. De More, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, Publication 97-4, Jet Propulsion Laboratory, Pasadena, CA, 1997.
6.
F.
Jensen
and
J.
Oddershede
,
J. Phys. Chem.
94
,
2235
(
1990
).
7.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
9335
(
1993
).
8.
A.
Toniolo
,
M.
Persico
, and
D.
Pitea
,
J. Phys. Chem. A
104
,
7278
(
2000
).
9.
K.
Johnsson
,
A.
Engdahl
, and
B.
Nelander
,
J. Phys. Chem.
99
,
3965
(
1995
).
10.
S. L.
Nickolaisen
,
C. E.
Miller
,
S. P.
Sander
,
M. R.
Hand
,
I. H.
Williams
, and
J. S.
Francisco
,
J. Chem. Phys.
104
,
2857
(
1996
).
11.
F.
Motte-Tollet
,
M.-P.
Ska
,
G. M.
Marston
,
I. C.
Walker
,
M. R. F.
Siggel
,
J. M.
Gingell
,
L.
Kaminski
,
K.
Brown
, and
N. J.
Mason
,
Chem. Phys. Lett.
275
,
298
(
1997
).
12.
J. N.
Nee
,
J. Quant. Spectrosc. Radiat. Transf.
46
,
55
(
1991
).
13.
C.
Lin
,
J. Chem. Eng. Data
21
,
411
(
1976
).
14.
L. T.
Molina
and
M. J.
Molina
,
J. Phys. Chem.
91
,
433
(
1987
).
15.
H. D.
Knauth
,
H.
Alberti
, and
H.
Clausen
,
J. Phys. Chem.
83
,
1604
(
1979
).
16.
J. E.
Del Bene
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
246
,
541
(
1995
).
17.
K. E.
Valenta
,
K.
Vasudevan
, and
F.
Grein
,
J. Chem. Phys.
72
,
2148
(
1980
).
18.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
19.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
).
20.
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
329
(
1979
).
21.
H.
Nakatsuji
,
Chem. Phys. Lett.
67
,
334
(
1979
).
22.
H. Nakatsuji, in Computational Chemistry—Review of Current Trends (World Scientific, Singapore, 1997), Vol. 2, pp. 62–124.
23.
H.
Nakatsuji
,
Acta Chim. Hung.
129
,
719
(
1992
).
24.
H.
Nakatsuji
,
Chem. Phys.
75
,
425
(
1983
).
25.
H.
Nakatsuji
,
O.
Kitao
, and
M.
Yonezawa
,
J. Chem. Phys.
83
,
723
(
1985
).
26.
H.
Nakatsuji
,
M.
Ehara
,
M. H.
Palmer
, and
M. F.
Guest
,
J. Chem. Phys.
97
,
2561
(
1992
).
27.
H.
Nakatsuji
and
M.
Ehara
,
J. Chem. Phys.
101
,
7658
(
1994
).
28.
H.
Nakatsuji
,
J.
Hasegawa
, and
M.
Hada
,
J. Chem. Phys.
104
,
2321
(
1996
).
29.
H.
Nakatsuji
,
J.
Hasegawa
, and
K.
Ohkawa
,
Chem. Phys. Lett.
296
,
499
(
1998
).
30.
J.
Hasegawa
,
K.
Ohkawa
, and
H.
Nakatsuji
,
J. Phys. Chem. B
102
,
6205
(
1998
).
31.
H.
Nakatsuji
,
Chem. Phys. Lett.
177
,
331
(
1991
).
32.
M.
Ehara
,
P.
Tomasello
,
J.
Hasegawa
, and
H.
Nakatsuji
,
Theor. Chem. Acc.
102
,
161
(
1999
).
33.
M.
Ehara
,
M.
Ishida
, and
H.
Nakatsuji
,
J. Chem. Phys.
114
,
8990
(
2001
).
34.
M. Ehara, M. Ishida, K. Toyota, and H. Nakatsuji, in Reviews in Modern Quantum Chemistry, edited by K. D. Sen (World Scientific, Singapore, in press).
35.
R.
Kishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
36.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
37.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
).
38.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
39.
T. H. Dunning, Jr. and P. J. Hay, in Modern Theoretical Chemistry, edited by H. F. Schaefer III (Plenum, New York, 1976), Vol. 3, p. 1.
40.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
41.
K. Toyota and H. Nakatsuji (unpublished).
42.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Gaussian, Inc., Pittsburgh, PA, 1998.
43.
H. Nakatsuji, M. Hada, M. Ehara, J. Hasegawa, T. Nakajima, H. Nakai, O. Kitao, and K. Toyota, SAC/SAC-CI program system (SAC-CI96) for calculating ground, excited, ionized, and electron-attached states having singlet to septet spin multiplicities, 1996.
44.
M.
Nakata
,
M.
Sugic
,
H.
Takeo
,
C.
Matsumura
,
T.
Fukuyama
, and
K.
Kuchitsu
,
J. Mol. Spectrosc.
86
,
241
(
1981
).
45.
M.
Birk
,
M. M.
Fiedl
,
E. A.
Cohen
,
H. M.
Pickett
, and
S. P.
Sander
,
J. Chem. Phys.
91
,
6588
(
1989
).
46.
Y.
Morino
and
S.
Saito
,
J. Mol. Spectrosc.
19
,
435
(
1966
).
47.
M.
Schwell
,
H.-W.
Jochims
,
B.
Wasserman
,
U.
Rockland
,
R.
Flesch
, and
E.
Ruehl
,
J. Phys. Chem.
100
,
10070
(
1996
).
48.
M. P.
Grath
,
K. C.
Clemitshaw
,
F. S.
Rowland
, and
W. J.
Hehre
,
J. Phys. Chem.
94
,
6126
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.