Polymer blends are formulated by mixing polymers with different chemical structures to create new materials with properties intermediate between those of the individual components. While Flory–Huggins (FH) theory explains some basic trends in blend miscibility, the theory completely neglects the dissimilarity in monomer structures that is central to the fabrication of real blends. We systematically investigate the influence of monomer structure on blend miscibility using a lattice cluster theory (LCT) generalization of the FH model. Analytic calculations are rendered tractable by restricting the theoretical analysis to the limit of incompressible and high molecular weight blends. The well-known miscibility pattern predicted by FH theory is recovered only for a limited range of monomer size and shape asymmetries, but additional contributions to the LCT entropy and internal energy of mixing for polymers with dissimilarly shaped monomers lead to three additional blend miscibilty classes whose behaviors are quite different from the predictions of classical FH theory. One blend miscibility class (class IV) exhibits a remarkable resemblance to the critical behavior of polymer solutions. In particular, the theta temperature for class IV blends is near a molecular weight insensitive critical temperature for phase separation, the critical composition is highly asymmetric, and the correlation length amplitude is significantly less than the chain radius of gyration. Experimental evidence for these new blend miscibility classes is discussed, and predictions are made for specific blends of polyolefins that should illustrate these new patterns of blend miscibility.

1.
P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953);
M. L.
Huggins
,
J. Chem. Phys.
9
,
440
(
1941
);
P. J.
Flory
,
J. Chem. Phys.
9
,
660
(
1941
);
A. J.
Staverman
,
Recl. Trav. Chim. Pays-Bas.
60
,
640
(
1941
).
2.
P. J.
Flory
,
Discuss. Faraday Soc.
49
,
7
(
1970
).
3.
P. G.
de Gennes
,
J. Phys. (Paris)
31
,
235
(
1970
);
Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).
4.
S. C.
Glotzer
,
Annu. Rev. Comput. Phys.
2
,
1
(
1995
). See references cited in this paper for further studies of the dynamics of polymer phase separation.
5.
A. M.
Thayer
,
Chem. Eng. News
11
,
15
(
1995
);
P. S.
Subramanian
and
K. J.
Chou
,
Trends Polym. Sci.
3
,
248
(
1995
).
6.
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
24
,
5076
(
1991
);
M. G.
Bawendi
and
K. F.
Freed
,
J. Phys. Chem.
86
,
3720
(
1987
);
A. M.
Nemirovsky
,
M. G.
Bawendi
, and
K. F.
Freed
,
J. Chem. Phys.
87
,
7272
(
1987
);
K. F.
Freed
,
J. Phys. A
18
,
871
(
1985
).
7.
K. F.
Freed
and
J.
Dudowicz
,
Theor. Chim. Acta
82
,
357
(
1992
).
8.
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
24
,
5112
(
1991
).
9.
K. W.
Foreman
and
K. F.
Freed
,
Macromolecules
30
,
7279
(
1997
),
K. W.
Foreman
and
K. F.
Freed
,
J. Chem. Phys.
106
,
7422
(
1997
).
10.
K. W.
Foreman
and
K. F.
Freed
,
Adv. Chem. Phys.
103
,
335
(
1998
).
11.
R.
Koningveld
,
L. A.
Kleintjens
, and
E.
Niels
,
Croat. Chem. Acta
60
,
53
(
1987
).
12.
K. F.
Freed
,
J.
Dudowicz
, and
K. W.
Foreman
,
J. Chem. Phys.
108
,
7881
(
1998
);
C.
Delfolie
,
L. C.
Dickinson
,
K. F.
Freed
,
J.
Dudowicz
, and
W. J.
MacKnight
,
Macromolecules
32
,
7781
(
1999
);
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
33
,
5192
(
2000
).
13.
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
33
,
9777
(
2000
).
14.
J.
Dudowicz
,
M. S.
Freed
, and
K. F.
Freed
,
Macromolecules
24
,
5096
(
1991
).
15.
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
26
,
213
(
1993
).
16.
S.
Jansen
,
D.
Schwahn
,
K.
Mortensen
, and
T.
Springer
,
Macromolecules
26
,
5587
(
1993
);
B.
Hammouda
and
B. J.
Bauer
,
Macromolecules
28
,
4505
(
1995
).
17.
T. P.
Russell
,
T. E.
Karis
,
Y.
Gallot
, and
A. M.
Mayers
,
Nature (London)
368
,
729
(
1994
);
T. E.
Karis
,
T. P.
Russell
,
Y.
Gallot
, and
A. M.
Mayes
,
Macromolecules
28
,
1129
(
1995
).
18.
K. S.
Schweizer
and
J. G.
Curro
,
Adv. Polym. Sci.
116
,
319
(
1994
);
K. S.
Schweizer
and
J. G.
Curro
,
Adv. Chem. Phys.
98
,
1
(
1997
).
19.
G. H.
Fredrickson
,
A. J.
Liu
, and
F. S.
Bates
,
Macromolecules
27
,
2503
(
1994
).
20.
F. S.
Bates
,
M. F.
Schultz
,
J. H.
Resendale
, and
K.
Almdal
,
Macromolecules
25
,
5547
(
1992
).
21.
W.
Siol
,
Makromol. Chem., Macromol. Symp.
44
,
47
(
1991
);
H.-G.
Braun
and
G.
Rehage
,
Angew. Makromol. Chem.
131
,
107
(
1985
).
22.
A.
Sariban
and
K.
Binder
,
J. Chem. Phys.
86
,
5859
(
1987
);
A.
Sariban
and
K.
Binder
,
Macromolecules
21
,
711
(
1988
);
H.-P.
Deutsch
and
K.
Binder
,
Macromolecules
25
,
6214
(
1992
).
23.
M.
Müller
and
K.
Binder
,
Macromolecules
28
,
1825
(
1995
).
24.
F. A.
Escobedo
and
J. J.
de Pablo
,
Macromolecules
32
,
900
(
1999
).
25.
M. D.
Gehlsen
,
J. H.
Rosendale
,
F. S.
Bates
,
G. D.
Wignall
,
L.
Hansen
, and
K.
Almdal
,
Phys. Rev. Lett.
68
,
2452
(
1992
).
26.
F. S.
Bates
,
J. H.
Rosendale
,
P.
Stepanek
,
T. P.
Lodge
,
P.
Wiltzius
,
G. H.
Fredrickson
, and
R. P.
Hjelm
,
Phys. Rev. Lett.
65
,
1893
(
1990
).
27.
C. C.
Han
,
B. J.
Bauer
,
J. C.
Clark
,
Y.
Muroga
,
Y.
Matsushita
,
M.
Okaa
,
Q.
Tran-cong
,
T.
Chang
, and
I. C.
Sanchez
,
Polymer
29
,
2002
(
1988
);
C. C.
Han
,
M.
Okada
,
Y.
Muroga
,
B. J.
Bauer
, and
Q.
Tran-cong
,
Polym. Eng. Sci.
26
,
1208
(
1986
).
28.
B.
Hammouda
and
B. J.
Bauer
,
Macromolecules
28
,
4505
(
1995
).
29.
R.
Krishnamoorti
,
W. W.
Graessley
,
L. J.
Fetters
,
R. T.
Garner
, and
D. J.
Lohse
,
Macromolecules
28
,
1252
(
1995
).
30.
F. S.
Bates
,
M. F.
Schulz
, and
J. H.
Rosendale
,
Macromolecules
24
,
5096
(
1991
); see Ref. 39 for a comparison of the Bates et al. data with FH theory.
31.
K. F.
Freed
and
J.
Dudowicz
,
Macromolecules
31
,
6681
(
1998
). The simplified LCT was formally called the “pedestrian model.”
32.
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
Phys. Rev. Lett.
88
,
095503
(
2002
).
33.
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
29
,
8960
(
1996
);
J.
Dudowicz
,
K. F.
Freed
, and
J. F.
Douglas
,
Macromolecules
28
,
2276
(
1995
);
M.
Lifschitz
,
J.
Dudowicz
, and
K. F.
Freed
,
J. Phys. Chem.
100
,
3957
(
1994
).
34.
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
28
,
6625
(
1995
).
35.
P. G.
de Gennes
,
J. Phys. (France) Lett.
38
,
L441
(
1977
);
J. F.
Joanny
,
J. Phys. A
11
,
117
(
1978
).
36.
K.
Binder
,
Phys. Rev. A
29
,
341
(
1984
);
K.
Binder
,
J. Chem. Phys.
79
,
6387
(
1983
).
37.
R.
Holyst
and
T. A.
Vilgis
,
J. Chem. Phys.
99
,
4835
(
1993
).
38.
H.-P.
Deutsch
and
K.
Binder
,
J. Phys. II
3
,
1049
(
1993
).
39.
C.
Singh
and
K. S.
Schweizer
,
Macromolecules
30
,
1490
(
1997
); see references cited in this paper.
40.
Simulations of
Mackie
et al. [
J. Chem. Phys.
102
,
1014
(
1995
)] indicate that the ratio Tc(N1→∞,N2=1)/Tc(N1=N2=1)≈3.48,
whereas the theoretical analysis by
Douglas
and
Ishinabe
[
Phys. Rev. E
51
,
1791
(
1995
)] estimates this ratio as 10/3.
41.
P. G.
de Gennes
,
Phys. Lett. A
26
,
313
(
1968
).
42.
K. F. Freed, Renormalization Theory of Macromolecules (Wiley, New York, 1987).
43.
J. des Cloizeaux and G. Jannick, Polymers and Solutions: Modeling and Structure (Clarendon, Oxford, 1990).
44.
B.
Duplantier
,
J. Phys. (France)
43
,
991
(
1982
).
45.
M. A.
Anisimov
,
V. A.
Agayan
, and
E. E.
Gorodetskii
,
JETP Lett.
72
,
578
(
2000
);
M. A. Anisimov, A. F. Kostko, and J. V. Sengers, Phys. Rev. E (in press).
46.
E. A.
Guggenheim
,
Proc. R. Soc. London, Ser. A
183
,
303
(
1944
);
E. A.
Guggenheim
,
Proc. R. Soc. London, Ser. A
183
,
213
(
1944
);
A. R. Miller, Theory of Solutions of High Polymers (Oxford University press, New York, 1948).
47.
The contribution to a of order 1/z3 very probably depends on φ.
48.
We note that
Frankel
and
Louis
[
Phys. Rev. Lett.
68
,
3363
(
1992
);
see also
M.
Dijkstra
and
D.
Frenkel
,
Phys. Rev. Lett.
72
,
298
(
1984
);
D.
Frenkel
,
Physica A
263
,
26
(
1999
)] have considered an exactly solvable model involving a mixture of dissimilarly sized squares in two dimensions that gives insights into the physical origin of the “entropic” contribution to χ.
49.
Our united atom model implies that a=c=0 for isotopic blends. Experiments indicate, however, that a and c are small, but nonzero, so the use of our model is clearly approximation for such blends.
50.
J.
Dudowicz
,
M.
Lifschitz
,
K. F.
Freed
, and
J. F.
Douglas
,
J. Chem. Phys.
99
,
4804
(
1993
).
51.
The square gradient coefficient do is denoted in Ref. 50 as co.
52.
See, for instance,
W. W.
Graessley
,
R.
Krishnamoorti
,
N. P.
Balsara
,
L. J.
Fetters
,
D. J.
Lohse
,
D. N.
Schulz
, and
J. A.
Sissano
,
Macromolecules
27
,
2574
(
1994
);
H.
Jinnai
,
H.
Hasegawa
,
T.
Hashimoto
, and
C. C.
Han
,
Macromolecules
25
,
6078
(
1992
).
53.
J.
Dudowicz
,
K. F.
Freed
, and
W. G.
Madden
,
Macromolecules
23
,
4803
(
1990
).
54.
G. H.
Reichart
,
W. W.
Graessley
,
R. A.
Register
, and
D. J.
Lohse
,
Macromolecules
31
,
7886
(
1998
).
55.
M. A.
Anisimov
,
S. B.
Kisielev
,
J. V.
Sengers
, and
S.
Tang
,
Physica A
188
,
487
(
1992
);
J. M. H. Levelt-Sengers and J. V. Sengers, in Perspectives in Statistical Physics, edited by H. J. Raveche (North–Holland, Amsterdam, 1981), Chap. 14.
56.
Y. B.
Melnichenko
,
G. D.
Wignall
, and
W. A.
Van Hook
,
Europhys. Lett.
48
,
372
(
1999
);
P.
Debye
,
H.
Coll
, and
D.
Woermann
,
J. Chem. Phys.
33
,
1746
(
1960
).
57.
K.
Kajiwara
,
W.
Burchard
,
L. A.
Kleintjens
, and
R.
Koningsveld
,
Polym. Bull.
7
,
191
(
1982
).
58.
The mean field theory ratio of Tθ/Tc=4 is reduced to a value of about 3 by fluctuation effects [
J. F.
Douglas
and
T.
Ishinabe
,
Phys. Rev. E
51
,
1791
(
1995
)].
59.
R. M.
Briber
,
B. J.
Bauer
, and
B.
Hammouda
,
J. Chem. Phys.
101
,
2592
(
1994
).
60.
S.
Choi
,
X.
Lin
, and
R. M.
Briber
,
J. Polym. Sci. B
36
,
1
(
1998
).
61.
K. S.
Petersen
,
A. D.
Stein
, and
M. D.
Fayer
,
Macromolecules
23
,
111
(
1990
);
A.
Sariban
and
K.
Binder
,
Macromol. Chem. Phys.
189
,
2357
(
1988
).
62.
Y. B. Melnichenko, G. D. Wignall, and D. Schwahn (unpublished).
63.
M.
Shibayama
,
H.
Yang
,
R. S.
Stein
, and
C. C.
Han
,
Macromolecules
18
,
2179
(
1985
).
64.
The general limitations of the SLCT in treating polymer solutions do not hinder the derivation of the scalings for polymer solutions (class I) since both a and c are zero.
65.
M.
Mondello
,
G. S.
Grest
,
A. R.
Garcia
, and
B. G.
Sibernagel
,
J. Chem. Phys.
105
,
5208
(
1996
);
J. I.
Siepmann
,
M. G.
Martin
,
C. J.
Mundy
, and
M. L.
Klein
,
Mol. Phys.
90
,
687
(
1997
);
B.
Smit
,
S.
Karaboni
, and
J. I.
Siepmann
,
J. Chem. Phys.
102
,
2126
(
1995
).
66.
J.
Dudowicz
and
K. F.
Freed
,
Pol. J. Chem.
75
,
527
(
2001
);
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
33
,
3467
(
2000
).
67.
J.
Cahn
and
J. E.
Hilliard
,
J. Chem. Phys.
28
,
258
(
1958
);
H.
Chaar
,
M. R.
Moldover
, and
J. W.
Schmidt
,
J. Chem. Phys.
85
,
418
(
1986
);
M. R.
Moldover
,
Phys. Rev. A
31
,
1022
(
1985
);
B.
Widom
,
J. Stat. Phys.
52
,
1343
(
1988
).
68.
H.-P.
Deutsch
,
J. Chem. Phys.
99
,
4825
(
1993
).
69.
A. A.
Povodyrev
,
M. A.
Anisimov
, and
J. V.
Sengers
,
Physica A
264
,
345
(
1999
).
70.
I. C.
Sanchez
and
R. H.
Lacombe
,
Macromolecules
11
,
1145
(
1978
);
D.
Patterson
,
Macromolecules
2
,
672
(
1969
);
D.
Patterson
,
G.
Delmas
, and
T.
Somcynsky
,
Polymer
8
,
503
(
1967
);
J. M.
Bardin
and
D.
Patterson
,
Polymer
10
,
247
(
1969
);
J. S.
Rowlinson
and
P. I.
Freeman
,
Polymer
1
,
20
(
1960
).
71.
B.
Chu
,
I. H.
Park
,
Q.-W.
Wang
, and
C.
Wu
,
Macromolecules
20
,
2833
(
1987
);
I. H.
Park
,
Q.-W.
Wang
, and
B.
Chu
,
Macromolecules
20
,
1965
(
1987
);
K.
Kubota
,
K. M.
Abbey
, and
B.
Chu
,
Macromolecules
16
,
137
(
1983
);
J. F.
Douglas
,
Macromolecules
21
,
3515
(
1988
).
72.
M. E.
Fisher
,
Phys. Rev. Lett.
57
,
1911
(
1986
).
73.
Sanchez [
I. C.
Sanchez
,
J. Phys. Chem.
93
,
6983
(
1989
)] has suggested that the correlation length amplitude ξo of polymer solutions near the critical point correlates with the square root of the critical composition.
This content is only available via PDF.
You do not currently have access to this content.