The potential energy surfaces for the low-lying doublet states of the azide radical (N3) have been computed at the complete active space self-consistent field (CASSCF) level with the CAS(15,12) active space. The cc-pVTZ and aug-cc-pVTZ basis sets have been employed throughout the present work. Energies, geometries and harmonic frequencies were determined for the N3 linear ground electronic state (2Πg), a stable C2v ring structure (2B1), and a Cs transition state (2A) connecting the ring and linear structures. Other N3(C2v) stationary points (2A2,B12, and A12) have been characterized, as well. The vertical excitation energies for the doublet excited states of the N3 linear (2Πg) and stable ring (2B1) isomers were calculated using CASSCF and multireference configuration interaction [MRCI-SD(Q)] methods. A new route to tetraazatetrahedrane [N4(Td)] has been proposed on the N4 singlet potential energy surface within Cs symmetry. MRCI-SD(Q) calculations predict that N4(Td) can be formed from atomic nitrogen in the D2 state and N3(C2v,B12) in a barrierless exothermic reaction. The energy difference (D0) is 135.4 kcal/mol at the MRCI-SD(Q) level.

1.
T.
Curtius
,
Ber. Dtsch. Chem. Ges.
23
,
3023
(
1890
).
2.
K.O.
Christe
,
W.W.
Wilson
,
J.A.
Sheehy
, and
J.A.
Boatz
,
Angew. Chem.
38
,
2004
(
1999
).
3.
K.O.
Christe
,
D.A.
Dixon
,
D.
McLemore
,
W.W.
Wilson
,
J.A.
Sheehy
, and
J.A.
Boatz
,
J. Fluorine Chem.
101
,
151
(
2000
).
4.
A.E.
Douglas
and
W.J.
Jones
,
Can. J. Phys.
43
,
2216
(
1965
).
5.
J.M.
Dyke
,
N.B.H.
Jonathan
,
A.E.
Lewis
, and
A.
Moris
,
Mol. Phys.
47
,
1231
(
1982
).
6.
A.
Friedman
,
A.M.
Soliva
,
S.A.
Nizkorodov
,
E.J.
Bieske
, and
J.P.
Maier
,
J. Phys. Chem.
98
,
8896
(
1994
).
7.
R.
Tian
,
J.C.
Facelli
, and
J.
Michl
,
J. Phys. Chem.
92
,
4073
(
1988
).
8.
K.
Hiraoka
and
G.
Nakajima
,
J. Chem. Phys.
88
,
7709
(
1988
).
9.
T.J.
Lee
and
J.E.
Rice
,
J. Chem. Phys.
94
,
1215
(
1991
).
10.
M.M.
Francl
and
J.P.
Chesick
,
J. Phys. Chem.
94
,
526
(
1990
).
11.
W.J.
Lauderdale
,
J.F.
Stanton
, and
R.J.
Bartlett
,
J. Phys. Chem.
96
,
1173
(
1992
).
12.
D.R.
Yarkony
,
J. Am. Chem. Soc.
114
,
5406
(
1992
).
13.
M.N.
Glukhovtsev
and
P.
von R. Schleyer
,
Int. J. Quantum Chem.
198
,
547
(
1992
).
14.
K.M.
Dunn
and
K.
Morokuma
,
J. Chem. Phys.
102
,
4904
(
1995
).
15.
A.A.
Korkin
,
A.
Balková
,
R.J.
Bartlett
,
R.J.
Boyd
, and
P.
von R. Schleyer
,
J. Phys. Chem.
100
,
5702
(
1996
).
16.
M.N.
Glukhovtsev
and
S.
Laiter
,
J. Phys. Chem.
100
,
1569
(
1996
).
17.
M.N.
Glukhovtsev
,
H.
Jiao
, and
P.
von R. Schleyer
,
Inorg. Chem.
35
,
7124
(
1996
).
18.
S.A.
Perera
and
R.J.
Bartlett
,
Chem. Phys. Lett.
314
,
381
(
1999
).
19.
M.
Bittererová
,
T.
Brinck
, and
H.
Östmark
,
J. Phys. Chem. A
104
,
11999
(
2000
).
20.
M.
Bittererová
,
T.
Brinck
, and
H.
Östmark
,
Chem. Phys. Lett.
340
,
597
(
2001
).
21.
M.
Bittererová
,
H.
Östmark
, and
T.
Brinck
,
Chem. Phys. Lett.
347
,
220
(
2001
).
22.
T.J.
Lee
and
C.E.
Dateo
,
Chem. Phys. Lett.
345
,
295
(
2001
).
23.
J.P.
Zheng
,
J.
Waluk
,
J.
Spanget-Larsen
,
D.M.
Blake
, and
J.G.
Radzis-zewski
,
Chem. Phys. Lett.
328
,
227
(
2000
).
24.
F.
Cacace
,
G.
de Petris
, and
A.
Troiani
,
Science
295
,
480
(
2002
).
25.
A.N. Wright and C.A. Winkler, Active Nitrogen (Academic, New York, 1968).
26.
J.A.
Dodd
,
S.J.
Lipson
,
D.J.
Flanagan
,
W.A.M.
Blumberg
,
J.C.
Person
, and
B.D.
Green
,
J. Chem. Phys.
94
,
4301
(
1991
).
27.
H.
Umemoto
and
K.
Matsumoto
,
J. Chem. Phys.
104
,
9640
(
1996
).
28.
H.
Umemoto
,
T.
Asai
, and
Y.
Kimura
,
J. Chem. Phys.
106
,
4985
(
1997
).
29.
H.
Kobayashi
,
T.
Takayanagi
, and
S.
Tsunashima
,
Chem. Phys. Lett.
277
,
20
(
1997
).
30.
N.
Balucani
,
M.
Alagia
,
L.
Cartechini
,
P.
Casavecchia
,
G.G.
Volpi
,
L.A.
Pederson
, and
G.C.
Schatz
,
J. Phys. Chem. A
105
,
2414
(
2001
).
31.
M.
Alagia
,
N.
Balucani
,
L.
Cartechini
, et al.
J. Chem. Phys.
110
,
8857
(
1999
).
32.
L.A.
Pederson
,
G.C.
Schatz
,
T.-S.
Ho
,
T.
Hollebeek
,
H.
Rabitz
,
L.B.
Harding
, and
G.
Lendvay
,
J. Chem. Phys.
110
,
9091
(
1999
).
33.
H.
Kajihara
,
F.
Okada
, and
S.
Okada
,
Chem. Phys.
186
,
395
(
1994
).
34.
P.L.
Kunsch
and
K.
Dressler
,
J. Chem. Phys.
68
,
2550
(
1978
).
35.
P.L.
Kunsch
,
J. Chem. Phys.
68
,
4564
(
1978
).
36.
O.
Oehler
,
D.A.
Smith
, and
K.
Dressler
,
J. Chem. Phys.
66
,
2097
(
1977
).
37.
B.A.
Thrush
,
Proc. R. Soc. London, Ser. A
235
,
143
(
1956
).
38.
C.R.
Brazier
,
P.F.
Bernath
,
J.B.
Burkholder
, and
C.J.
Howard
,
J. Chem. Phys.
89
,
1762
(
1988
).
39.
R.A.
Beaman
,
T.
Nelson
,
D.S.
Richards
, and
D.W.
Setser
,
J. Phys. Chem.
91
,
6090
(
1987
).
40.
R.
Pahnke
,
S.H.
Ashworth
, and
J.M.
Brown
,
Chem. Phys. Lett.
147
,
179
(
1988
).
41.
C.
Petrongolo
,
J. Mol. Struct.
175
,
215
(
1988
).
42.
J.M.L.
Martin
and
J.P.
Francois
,
J. Chem. Phys.
93
,
4485
(
1990
).
43.
R.E.
Continetti
,
D.R.
Cyr
,
D.L.
Osborn
,
D.J.
Leahy
, and
D.M.
Neumark
,
J. Chem. Phys.
99
,
2616
(
1993
).
44.
R.E.
Continetti
,
D.R.
Cyr
,
D.L.
Osborn
,
R.B.
Metz
, and
D.M.
Neumark
,
Chem. Phys. Lett.
182
,
406
(
1991
).
45.
J.M.L.
Martin
,
J.P.
Francois
, and
R.
Gijbels
,
J. Chem. Phys.
90
,
6469
(
1990
).
46.
J.
Wasilewski
,
J. Chem. Phys.
105
,
10969
(
1996
).
47.
R.
Klein
and
S.
Biskupič
,
Chem. Papers
47
,
143
(
1993
).
48.
M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA, 1998.
49.
ACES II is a program product of the Quantum Theory Project, University of Florida, J.F. Stanton, J. Gauss, J.D. Watts et al. Integral package included are VMOL (J. Almlöf and P.R. Taylor); VPROPS (P. Taylor); ABACUS (T. Helgaker, H.J.Aa. Jensen, P. Jørgensen, J. Olsen, and P.R. Taylor).
50.
MOLPRO 2000.1 is a package of ab initio programs written by H.-J. Werner, P.J. Knowles, with contributions from R.D. Amos, A. Bernhardsson, A. Berning et al.
51.
T.H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
52.
R.A.
Kendall
,
T.H.
Dunning
, Jr.
, and
R.J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
53.
A.D.
Becke
,
J. Chem. Phys.
96
,
2155
(
1992
).
54.
A.D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
55.
C.
Lee
,
W.
Yang
, and
R.G.
Parr
,
Phys. Rev. B
37
,
785
(
1998
).
56.
H.-J.
Werner
and
P.J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
).
57.
P.J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
58.
B.O.
Roos
,
P.R.
Taylor
, and
P.E.M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
59.
H.-J.
Werner
,
Mol. Phys.
89
,
645
(
1996
).
60.
K.
Raghavachari
,
G.W.
Trucks
,
J.A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
61.
R.J.
Bartlett
,
J.D.
Watts
,
S.A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
62.
J.
Gauss
,
W.J.
Lauderdale
,
J.F.
Stanton
,
J.D.
Watts
, and
R.J.
Bartlett
,
Chem. Phys. Lett.
182
,
207
(
1991
).
63.
J.D.
Watts
,
J.
Gauss
, and
R.J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
64.
H.-J.
Werner
and
P.J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
65.
P.J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
66.
S.R.
Langhoff
and
D.E.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
67.
D.E.
Woon
and
T.H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
68.
G.
Herzberg
and
E.
Terr
,
Z. Phys. Chem. Abt. B
21
,
410
(
1933
);
R.
Renner
,
Z. Phys.
92
,
172
(
1934
).
69.
H.A.
Jahn
and
E.
Teller
,
Proc. R. Soc. London, Ser. A
161
,
200
(
1937
);
H.A.
Jahn
and
E.
Teller
,
Proc. R. Soc. London, Ser. A
164
,
117
(
1938
).
70.
G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1966), Vol. 3.
71.
H.
Östmark
,
O.
Launilla
,
S.
Wallin
, and
R.
Tryman
,
J. Raman Spectrosc.
32
,
195
(
2001
).
72.
W.J. Hehre, L. Radon, P.v.R. Schleyer, and J.A. Pople, Ab Initio Molecular Orbital Theory (Wiley Interscience, New York, 1986), p. 150.
This content is only available via PDF.
You do not currently have access to this content.