The crossed molecular beam technique is used to study the formation of negative ions in monosubstituted halobenzenes, by electron transfer collisions, using potassium atoms as electron donor projectiles, in a collision energy range from 10 up to 500 eV. The negative ions are detected by time-of-flight mass spectrometry and a quasidiatomic dynamical behavior in the fragmentation is found. A minor negative fragmentation of the phenyl ring is also reported. The parent negative ion is not observed for the range of collision energies in use. Density functional theoretical calculations support the major abundance of the halogen negative ions and explain the completely different behavior in the negative fragmentation of these aromatic systems compared to the one previously observed with the three fluoro-iodo-benzene isomers.

1.
D. R.
Herschbach
,
Adv. Chem. Phys.
10
,
319
(
1966
).
2.
A.
Baede
and
J.
Los
,
Physica (Amsterdam)
52
,
422
(
1971
).
3.
P. K.
Parks
,
A.
Wagner
, and
S.
Wexler
,
J. Chem. Phys.
56
,
5502
(
1973
).
4.
E. W.
Rothe
,
S. Y.
Tang
, and
G. P.
Reck
,
Chem. Phys. Lett.
26
,
434
(
1974
).
5.
Philip R.
Brooks
,
Science
193
,
11
(
1976
).
6.
R. N.
Compton
,
P. W.
Reinhardt
, and
L. D.
Cooper
,
J. Chem. Phys.
68
,
4360
(
1978
).
7.
K.
Lacmann
,
Adv. Chem. Phys.
42
,
513
(
1980
).
8.
A. W.
Kleyn
,
J.
Los
, and
E. A.
Gislason
,
Phys. Rep.
90
,
1
(
1982
).
9.
R. F. M.
Lobo
,
A. M. C.
Moutinho
,
K.
Lacmann
, and
J.
Los
,
J. Chem. Phys.
95
,
4360
(
1991
).
10.
J. C. Polanyi, Atomic Reactions (Williams & Norgate, London, 1932).
11.
A. E.
Grosser
and
R. B.
Bernstein
,
J. Chem. Phys.
41
,
1154
(
1964
).
12.
M. A. D. Fluendy and K. P. Lawley, Chemical Applications of Molecular Beam Scattering (Chapman & Hall, London, 1973).
13.
A. G.
Ureña
and
M.
Menziger
,
Chem. Phys.
99
,
437
(
1985
).
14.
L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides, in Electron-Molecule Interactions and Their Applications, edited by L. G. Christophorou (Academic, New York, 1984), Vol. 1.
15.
R. F. M.
Lobo
and
A. M. C.
Moutinho
,
Chem. Phys.
151
,
95
(
1991
).
16.
R. F. M.
Lobo
,
A. M. C.
Moutinho
, and
J.
Los
,
Chem. Phys.
179
,
179
(
1994
).
17.
R. F. M.
Lobo
,
A. M. C.
Moutinho
, and
M. J.
Calhorda
,
Chem. Phys.
234
,
265
(
1998
).
18.
R. N.
Compton
and
P. W.
Reinhardt
,
Chem. Phys. Lett.
91
,
268
(
1982
).
19.
S. A.
Harris
,
P. W.
Harland
, and
P. R.
Brooks
,
Phys. Chem. Chem. Phys.
2
,
787
(
2000
).
20.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
21.
T.
Ziegler
,
Chem. Rev.
91
,
651
(
1991
).
22.
P.
Pyykkö
,
Chem. Rev.
97
,
597
(
1997
).
23.
J. A.
Aten
and
J.
Los
,
J. Phys. E
8
,
408
(
1973
).
24.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A8, Gaussian, Inc., Pittsburgh, PA, 1998.
25.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
26.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
27.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
28.
M. J.
Frisch
,
M.
Head-Gordon
, and
J. A.
Pople
,
Chem. Phys. Lett.
166
,
275
(
1990
).
29.
J.
Cioslowski
and
B. B.
Stefanov
,
Mol. Phys.
84
,
707
(
1995
).
30.
R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford, 1990).
31.
B. K.
Annis
and
S.
Datz
,
J. Chem. Phys.
69
,
2553
(
1978
).
32.
S.
Körnig
,
J. H. M.
Beijersbergen
, and
J.
Los
,
J. Phys. Chem.
94
,
611
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.