A semiclassical methodology for evaluating the Boltzmann operator entering semiclassical approximations for finite temperature correlation functions is described. Specifically, Miller’s imaginary time semiclassical approach is applied to the Herman–Kluk coherent state initial value representation (IVR) for the time evolution operator in order to obtain a coherent state IVR for the Boltzmann operator. The phase-space representation gives rise to exponentially decaying factors for the coordinates and momenta of the real time trajectories employed in the dynamical part of the calculation. A Monte Carlo procedure is developed for evaluating dynamical observables, in which the absolute value of the entire exponential part of the integrand serves as the sampling function. Numerical tests presented show that the methodology is accurate as well as stable over the temperature range relevant to chemical applications.

1.
J. H.
Van Vleck
,
Proc. Natl. Acad. Sci. U.S.A.
14
,
178
(
1928
).
2.
C.
Morette
,
Phys. Rev.
81
,
848
(
1952
).
3.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
4.
W. H.
Miller
,
Adv. Chem. Phys.
30
,
77
(
1975
).
5.
M. S. Child, Semiclassical Mechanics with Molecular Applications (Clarendon, Oxford, 1991).
6.
E. J.
Heller
,
J. Chem. Phys.
94
,
2723
(
1991
).
7.
S.
Tomsovic
and
E. J.
Heller
,
Phys. Rev. Lett.
67
,
664
(
1991
).
8.
M. A.
Sepulveda
,
S.
Tomsovic
, and
E. J.
Heller
,
Phys. Rev. Lett.
69
,
402
(
1992
).
9.
M. A.
Sepulveda
and
F.
Grossmann
,
Adv. Chem. Phys.
96
,
191
(
1996
).
10.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
104
,
273
(
1996
).
11.
F.
Grossmann
,
Phys. Rev. A
60
,
1791
(
1999
).
12.
S.
Garashchuk
and
J. C.
Light
,
J. Chem. Phys.
113
,
9390
(
2000
).
13.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
14.
E.
Kluk
,
M. F.
Herman
, and
H. L.
Davis
,
J. Chem. Phys.
84
,
326
(
1986
).
15.
G.
Campolieti
and
P.
Brumer
,
Phys. Rev. A
50
,
997
(
1994
).
16.
J.
Wilkie
and
P.
Brumer
,
Phys. Rev. A
61
,
064101
(
2001
).
17.
K. G.
Kay
,
J. Chem. Phys.
100
,
4377
(
1994
).
18.
K. G.
Kay
,
J. Chem. Phys.
100
,
4432
(
1994
).
19.
K.
Kay
,
J. Chem. Phys.
107
,
2313
(
1997
).
20.
V. S.
Filinov
,
Nucl. Phys. B
271
,
717
(
1986
).
21.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
139
,
10
(
1987
).
22.
A. R.
Walton
and
D. E.
Manolopoulos
,
Mol. Phys.
84
,
961
(
1996
).
23.
M. L.
Brewer
,
J. S.
Hulme
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
106
,
4832
(
1997
).
24.
B. R.
McQuarrie
and
P.
Brumer
,
Chem. Phys. Lett.
319
,
27
(
2000
).
25.
H.
Wang
,
D. E.
Manolopoulos
, and
W. H.
Miller
,
J. Chem. Phys.
115
,
6317
(
2001
).
26.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
916
(
1997
).
27.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
28.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
4190
(
1998
).
29.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
30.
W. H.
Miller
,
Faraday Discuss.
110
,
1
(
1998
).
31.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
110
,
1343
(
1999
).
32.
K.
Thompson
and
N.
Makri
,
Phys. Rev. E
59
,
R4729
(
1999
).
33.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
110
,
6635
(
1999
).
34.
J.
Shao
and
N.
Makri
,
J. Phys. Chem.
103
,
7753
(
1999
).
35.
J.
Shao
and
N.
Makri
,
J. Phys. Chem.
103
,
9479
(
1999
).
36.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
112
,
47
(
2000
).
37.
J.
Shao
and
N.
Makri
,
J. Chem. Phys.
113
,
3681
(
2000
).
38.
E.
Jezek
and
N.
Makri
,
J. Phys. Chem.
105
,
2851
(
2001
).
39.
N. Makri, in Fluctuating Paths and Fields, edited by W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann (World Scientific, Singapore, 2001).
40.
H.
Wang
,
M.
Thoss
,
K. L.
Sorge
,
R.
Gelabert
,
X.
Gimenez
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
2562
(
2001
).
41.
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
9220
(
2001
).
42.
N. Makri and J. Shao (unpublished).
43.
S.
Garashchuk
,
F.
Grossmann
, and
D.
Tannor
,
J. Chem. Soc., Faraday Trans.
93
,
781
(
1997
).
44.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
108
,
8870
(
1998
).
45.
V.
Batista
,
M. T.
Zanni
,
J.
Greenblatt
,
D. M.
Neumark
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
3736
(
1999
).
46.
D. E.
Skinner
and
W. H.
Miller
,
J. Chem. Phys.
111
,
10787
(
1999
).
47.
M.
Thoss
,
W. H.
Miller
, and
G.
Stock
,
J. Chem. Phys.
112
,
10282
(
2000
).
48.
E. A.
Coronado
,
V. S.
Batista
, and
W. H.
Miller
,
J. Chem. Phys.
112
,
5566
(
2000
).
49.
W. H.
Miller
,
J. Phys. Chem.
105
,
2942
(
2001
).
50.
R.
Gelabert
,
X.
Giménez
,
M.
Thoss
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
114
,
2572
(
2001
).
51.
M.
Ovchinnikov
,
V. A.
Apkarian
, and
G. A.
Voth
,
J. Chem. Phys.
114
,
7130
(
2001
).
52.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
53.
E. J.
Heller
,
J. Chem. Phys.
65
,
1289
(
1976
).
54.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
55.
W. H.
Miller
,
J. Chem. Phys.
55
,
3146
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.