Dirac–Hartree–Fock (DHF) calculations were performed to investigate the hydration of the trivalent Cm ion with a 5f7 configuration on the models of Cm(H2O)n3+(n=1,2,4,6). The curium–oxygen distances and stabilization energies were evaluated. The DHF wave functions were analyzed by the Mulliken populations and spinor projections. Hydration was found to be characterized by the coordinate bond. An increase in the number of water molecules caused an increase in the curium–oxygen distance and a reduction of the stabilization energy per water molecule. The fluorescence transition energy was also estimated using the complete open-shell configuration interaction (COSCI) method. Redshifts due to hydration were obtained and were in accord with observations of the nephelauxetic effect. The isovalent gadolinium ion Gd3+ was also studied for comparison.

1.
J. J. Katz, G. T. Seaborg, and L. R. Morss, The Chemistry of the Actinide Elements (Chapman and Hall, New York, 1986).
2.
A. B.
Yusov
,
Radiokhimiya
35
,
3
(
1993
).
3.
J. V.
Beitz
and
J. P.
Hessler
,
Nucl. Technol.
51
,
169
(
1980
).
4.
J. V.
Beitz
,
Radiochim. Acta
52/53
,
35
(
1991
).
5.
J. I.
Kim
,
R.
Klenze
, and
H.
Wimmer
,
Eur. J. Solid State Inorg. Chem.
28
,
347
(
1991
).
6.
T.
Kimura
and
G. R.
Choppin
,
J. Alloys Compd.
213/214
,
313
(
1994
).
7.
T.
Kimura
,
G. R.
Choppin
,
Y.
Kato
, and
Z.
Yoshida
,
Radiochim. Acta
72
,
61
(
1996
).
8.
C. K. Jørgensen, Orbitals in Atoms and Molecules (Academic, London, 1962).
9.
W. T.
Carnall
,
J. Chem. Phys.
96
,
8713
(
1992
).
10.
DIRAC, a relativistic ab initio electronic structure program, T. Saue, T. Enevoldsen, T. Helgaker, H. J. Aa Jensen, J. K. Laerdahl, K. Ruud, J. Thyssen, and L. Visscher. See http://dirac.chem.sdu.dk
11.
I. P.
Grant
and
H. M.
Quiney
,
Adv. At. Mol. Phys.
23
,
37
(
1988
).
12.
K. G.
Dyall
,
P. R.
Taylor
,
K.
Faegri
Jr.
, and
H.
Partridge
,
J. Chem. Phys.
95
,
2583
(
1991
).
13.
T.
Saue
,
K.
Faegri
, Jr.
,
T.
Helgaker
, and
O.
Gropen
,
Mol. Phys.
91
,
937
(
1997
).
14.
T.
Saue
and
H. J.
Aa Jensen
,
J. Chem. Phys.
111
,
6211
(
1999
).
15.
O.
Visser
,
L.
Visscher
,
P. J. C.
Aerts
, and
W. C.
Nieuwpoort
,
J. Chem. Phys.
96
,
2910
(
1992
).
16.
L.
Visscher
,
T.
Saue
,
W. C.
Nieuwpoort
,
K.
Faegri
, Jr.
, and
O.
Gropen
,
J. Chem. Phys.
99
,
6704
(
1993
).
17.
L.
Visscher
,
O.
Visser
,
P. J. C.
Aerts
,
H.
Merenga
, and
W. C.
Nieuwpoort
,
Comput. Phys. Commun.
81
,
120
(
1994
).
18.
Y.
Mochizuki
and
H.
Tatewaki
,
Chem. Phys.
273
,
135
(
2001
).
19.
O.
Visser
,
P. J. C.
Aerts
,
D.
Hegarty
, and
W. C.
Nieuwpoort
,
Chem. Phys. Lett.
134
,
34
(
1987
).
20.
L.
Visscher
and
K. G.
Dyall
,
At. Data Nucl. Data Tables
67
,
207
(
1997
). The paper is also available at http://tc.chem.vu.nl/∼visscher/FiniteNuclei/FiniteNuclei.html
21.
Y.
Ishikawa
,
R. C.
Binnig
, and
K. M.
Sando
,
Chem. Phys. Lett.
101
,
111
(
1983
).
22.
K. G.
Dyall
,
I. P.
Grant
, and
S.
Wilson
,
J. Phys. B
17
,
L45
(
1984
).
23.
T. H.
Dunning
Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
24.
Y. Mochizuki, H. Tatewaki, and Y. Okamoto, J. Nucl. Sci. Tech. (in press).
25.
T.
Saue
,
K.
Faegri
, and
O.
Gropen
,
Chem. Phys. Lett.
263
,
360
(
1996
).
26.
K. G.
Dyall
,
I. P.
Grant
,
C. T.
Johnson
,
F. A.
Parpia
, and
E. P.
Plummer
,
Comput. Phys. Commun.
55
,
425
(
1989
).
27.
T. Yaita, J. Phys. Chem. (in press).
28.
F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (Wiley, New York, 1988).
29.
B. G.
Wybourne
,
J. Chem. Phys.
40
,
1456
(
1964
).
30.
J. B.
Gruber
,
W. R.
Cochran
,
J. G.
Conway
, and
T.
Nicol
,
J. Chem. Phys.
45
,
1423
(
1966
).
31.
W. T.
Carnall
and
K.
Rajnak
,
J. Chem. Phys.
63
,
3510
(
1975
).
32.
Atomic Spectroscopic Data, Physical Reference Database, United States National Institute of Standards and Technology. See http://physics.nist.gov/
This content is only available via PDF.
You do not currently have access to this content.