We present an iterative path integral algorithm for computing multitime correlation functions of a quantum system coupled to a dissipative bath of harmonic oscillators. By splitting the Boltzmann operator into two parts and reordering the propagators in the expression for canonical correlation functions, we are able to transform the evolution time contour into a symmetric one so that a forward propagation and a backward one are specified. Because the memory induced by the bath through the Feynman–Vernon influence functional decays rapidly in the complex time plane, long-time correlations are negligible. Taking advantage of this fact, we show that the correlation function can be obtained via an iterative procedure. The method is used to calculate three-time correlation functions of a dissipative two-level system.

1.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
2.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
M.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
3.
U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993).
4.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
5.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
6.
R. P.
Feynman
and
J. F. L.
Vernon
,
Ann. Phys. (N.Y.)
24
,
118
(
1963
).
7.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
8.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
9.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
10.
N.
Makri
,
J. Math. Phys.
36
,
2430
(
1995
).
11.
E.
Sim
and
N.
Makri
,
Comput. Phys. Commun.
99
,
335
(
1997
).
12.
N.
Makri
,
J. Phys. Chem.
102
,
4414
(
1998
).
13.
A. A.
Golosov
,
R. A.
Friesner
, and
P.
Pechukas
,
J. Chem. Phys.
110
,
138
(
1999
).
14.
E.
Sim
,
J. Chem. Phys.
115
,
4450
(
2001
).
15.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Redwood City, 1972).
16.
J.
Shao
and
N.
Makri
,
Chem. Phys.
268
,
1
(
2001
).
17.
R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics, 2nd ed. (Springer-Verlag, Heidelberg, 1991).
18.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).
19.
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics, 2nd ed. (World Scientific, Singapore, 1995).
20.
E.
Sim
and
N.
Makri
,
Chem. Phys. Lett.
249
,
224
(
1996
).
21.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
22.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
This content is only available via PDF.
You do not currently have access to this content.