It is becoming increasingly clear that the electronic properties of conjugated polymer films are strongly dependent on factors such as the conformation and the degree of aggregation of the polymer strands in the solution from which the film was cast. In this paper, we show how we can take advantage of conjugated ionomers (conjugated polymers that have been functionalized with side groups that can be electrically charged) to control the polymer morphology and degree of interchain interactions in both solutions and the films cast from them. The particular ionomer we study in this work, poly(2,5-bis[N-methyl-N-hexyl amino] phenylene vinylene) (BAMH-PPV), has dialkyl amino side groups that can be controllably charged by protonation with organic acids. In dilute BAMH-PPV solutions, protonation of just a few percent of the amino side groups leads to tight coiling of the polymer backbone, resulting in an enormous blueshift of the polymer’s absorption and photoluminescence (PL) spectra. At higher BAMH-PPV solution concentrations, however, protonation of the side groups leads to redshifted emission, indicative of increased interactions between polymer chromophores that presumably result from counterion-mediated attractive interactions. The results suggest that conjugated polymer chromophores in solution interact by interpenetration of neighboring chains rather than by self-aggregation of the chromophores on a single chain. Scanning force microscopy experiments indicate that the surface topography of BAMH-PPV films varies directly with the degree of side-group protonation in the solution from which the film was cast. In addition, BAMH-PPV films cast from protonated solutions have a redder PL spectrum and a higher degree of exciton–exciton annihilation than films cast from neutral solutions, verifying that memory of the chain conformation and degree of chromophore interaction in solution carries through the spin-coating process. The charge-induced changes in the morphology of BAMH-PPV films also lead to dramatic differences in the performance characteristics of BAMH-PPV-based light-emitting diodes. Overall, we believe that the degree of control over the electronic properties of conjugated ionomers makes them attractive candidates for use in a wide variety of optoelectronic devices.

1.
R. H.
Friend
,
R. W.
Gymer
,
A. B.
Holmes
et al.,
Nature (London)
397
,
121
(
1999
).
2.
A.
Kraft
,
A. C.
Grimsdale
, and
A. B.
Holmes
,
Angew. Chem. Int. Ed. Engl.
37
,
402
(
1998
).
3.
U.
Mitschke
and
P.
Bauerle
,
J. Mater. Chem.
10
,
1471
(
2000
).
4.
J.
Bharathan
and
Y.
Yang
,
Appl. Phys. Lett.
72
,
2660
(
1998
).
5.
H.
Sirringhaus
,
T.
Kawase
,
R. H.
Friend
,
T.
Shimoda
,
M.
Inbasekaran
,
W.
Wu
, and
E. P.
Woo
,
Science
290
,
2123
(
2000
).
6.
S. E.
Shaheen
,
R.
Radspinner
,
N.
Peyghambarian
, and
G. E.
Jabbour
,
Appl. Phys. Lett.
79
,
2996
(
2001
).
7.
M.
Granstrom
,
K.
Petritsch
,
A. C.
Arias
,
A.
Lux
,
M. R.
Andersson
, and
R. H.
Friend
,
Nature (London)
395
,
257
(
1998
).
8.
J. H.
Burroughes
,
D. D. C.
Bradley
,
A. R.
Brown
,
R. N.
Marks
,
K.
Mackay
,
R. H.
Friend
,
P. L.
Burns
, and
A. B.
Holmes
,
Nature (London)
347
,
539
(
1990
).
9.
G.
Gustafsson
,
Y.
Cao
,
G. M.
Treacy
,
F.
Klavetter
,
N.
Colinari
, and
A. J.
Heeger
,
Nature (London)
357
,
477
(
1992
).
10.
C. J.
Brabec
,
N. S.
Sariciftci
, and
J. C.
Hummelen
,
Adv. Func. Mat.
11
,
15
(
2001
).
11.
A. J.
Lovinger
and
L. J.
Rothberg
,
J. Mater. Res.
11
,
1581
(
1996
).
12.
H. E. A.
Huitema
,
G. H.
Gelinck
,
J. B. P. H.
van der Putten
,
K. E.
Kuijk
,
C. M.
Hart
,
E.
Cantatore
,
P. T.
Herwig
,
A. J. J. M.
van Breemen
, and
D. M.
de Leeuw
,
Nature (London)
414
,
599
(
2001
).
13.
T.-Q.
Nguyen
,
I.
Martini
,
J.
Liu
, and
B. J.
Schwartz
,
J. Phys. Chem. B
104
,
237
(
2000
).
14.
P.
Wang
,
C. J.
Collison
, and
L. J.
Rothberg
,
J. Photochem. Photobiol., A
144
,
63
(
2001
).
15.
T.
Huser
and
M.
Yan
,
J. Photochem. Photobiol., A
144
,
43
(
2001
).
16.
T.
Huser
,
M.
Yan
, and
L. J.
Rothberg
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
11
187
(
2000
).
17.
J.
Yu
,
D. H.
Hu
, and
P. F.
Barbara
,
Science
289
,
1327
(
2000
).
18.
S. H.
Lim
,
T. G.
Bjorklund
, and
C. J.
Bardeen
,
Chem. Phys. Lett.
342
,
555
(
2001
).
19.
T.-Q.
Nguyen
,
R. Y.
Yee
, and
B. J.
Schwartz
,
J. Photochem. Photobiol., A
144
,
21
(
2001
).
20.
M. I.
Sluch
,
C.
Pearson
,
M. C.
Petty
,
M.
Halim
, and
I. D. W.
Samuel
,
Synth. Met.
94
,
285
(
1998
).
21.
J.
Kim
and
T. M.
Swager
,
Nature (London)
411
,
1030
(
2001
).
22.
J.-D.
Hong
,
D.
Kim
,
D.
Cha
, and
J.-I.
Jin
,
Synth. Met.
84
,
815
(
1997
).
23.
R.
Schroeder
,
J. R.
Heflin
,
H.
Wang
,
H. W.
Gibson
, and
W.
Graupner
,
Synth. Met.
121
,
1521
(
2001
).
24.
M. F.
Durstock
,
B.
Tayler
,
R. J.
Spry
,
L.
Chiang
,
S.
Reulbach
,
K.
Heitfeld
, and
J. W.
Baur
,
Synth. Met.
116
,
373
(
2001
).
25.
Y.
Shi
,
J.
Liu
, and
Y.
Yang
,
J. Appl. Phys.
87
,
4254
(
2000
).
26.
J.
Liu
,
Y.
Shi
,
L.
Ma
, and
Y.
Yang
,
J. Appl. Phys.
88
,
605
(
2000
).
27.
T.-Q.
Nguyen
,
R. C.
Kwong
,
M. E.
Thompson
, and
B. J.
Schwartz
,
Appl. Phys. Lett.
76
,
2454
(
2000
).
28.
T. W.
Lee
,
O. O.
Park
,
L. M.
Do
, and
T.
Zyun
,
Synth. Met.
117
,
249
(
2001
).
29.
T.-W.
Lee
and
O. O.
Park
,
Appl. Phys. Lett.
77
,
3334
(
2000
).
30.
J. I.
Lee
,
G.
Klaerner
, and
R. D.
Miller
,
Synth. Met.
101
,
126
(
1999
).
31.
S. A.
Jenekhe
and
J. A.
Oseheni
,
Science
265
,
765
(
1994
).
32.
R.
Jakubiak
,
C. J.
Collison
,
W. C.
Wan
,
L. J.
Rothberg
, and
B.
Hsieh
,
J. Phys. Chem. A
103
,
239
(
1999
).
33.
I. D. W.
Samuel
,
G.
Rumbles
,
C. J.
Collison
,
R. H.
Friend
,
S. C.
Moratti
, and
A. B.
Holmes
,
Synth. Met.
84
,
497
(
1997
).
34.
E. M.
Conwell
,
Phys. Rev. B
57
,
14
200
(
1998
).
35.
M.
Yan
,
L. J.
Rothberg
,
E. W.
Kwock
, and
T. M.
Miller
,
Phys. Rev. Lett.
75
,
1992
(
1995
).
36.
M.
Yan
,
L. J.
Rothberg
,
F.
Papadimitrakopoulos
,
M. E.
Galvin
, and
T. M.
Miller
,
Phys. Rev. Lett.
72
,
1104
(
1994
).
37.
P. L.
Burn
,
R.
Beavington
,
M. J.
Frampon
,
J. N. G.
Pillow
, and
I. D. W.
Samuel
,
Mater. Sci. Eng., B
85
,
190
(
2001
).
38.
X. L.
Chen
,
A. J.
Lovinger
,
Z. N.
Bao
, and
J.
Sapjeta
,
Chem. Mater.
13
,
1341
(
2001
).
39.
A.
Eisenberg
,
Macromolecules
3
,
147
(
1970
).
40.
S.
Nomula
and
S. L.
Cooper
,
Macromolecules
30
,
1355
(
1997
).
41.
K.
Chakrabarty
,
R. A.
Weiss
,
A.
Sehgal
, and
T. A.
Seery
,
Macromolecules
31
,
7390
(
1998
).
42.
R. D.
Lundberg
and
R. R.
Phillips
,
J. Polym. Sci., Polym. Phys. Ed.
20
,
1143
(
1982
).
43.
W. M.
Gelbart
,
R. F.
Bruinsma
,
P. A.
Pincus
, and
V. A.
Parsegian
,
Phys. Today
53
,
38
(
2000
).
44.
T. W.
Lee
,
O. O.
Park
,
L. M.
Do
,
T. Y.
Zhung
,
T.
Ahn
, and
H.-K.
Shim
,
J. Appl. Phys.
90
,
2128
(
2001
).
45.
M.
Angelopoulos
,
R.
Dipietro
,
W. G.
Zheng
,
A. G.
MacDiarmid
, and
A. J.
Epstein
,
Synth. Met.
84
,
35
(
1997
).
46.
W.
Zheng
,
M.
Angelopoulos
,
A. J.
Epstein
, and
A. G.
MacDiarmid
,
Macromolecules
30
,
7634
(
1997
).
47.
J. D.
Stenger-Smith
,
P.
Zarras
,
L. H.
Merwin
,
S. E.
Shaheen
,
B.
Kippelen
, and
N.
Peyghambarian
,
Macromolecules
31
,
7566
(
1998
).
48.
J. D. Stenger-Smith, W. P. Norris, A. P. Chafin, and S. T. Sackenger, U.S. Patent 5,604,292 (1998).
49.
I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic, New York, 1984).
50.
G. J.
Denton
,
N.
Tessler
,
N. T.
Harrison
, and
R. H.
Friend
,
Phys. Rev. Lett.
78
,
733
(
1998
).
51.
V. I.
Klimov
,
D. W.
McBranch
,
N. N.
Barashkovb
, and
J. P.
Ferraris
,
Chem. Phys. Lett.
277
,
109
(
1997
).
52.
J.
Fang
,
M.
Dennin
,
C. M.
Knobler
,
Yu.
Godovsky
,
N. N.
Makarova
, and
H.
Yokoyama
,
J. Phys. Chem. B
101
,
3147
(
1997
).
53.
T.-Q.
Nguyen
,
V.
Doan
, and
B. J.
Schwartz
,
J. Chem. Phys.
110
,
4068
(
1999
).
54.
R. G.
Kepler
,
V. S.
Valencia
,
S. J.
Jacobs
, and
J. J.
McNamara
,
Synth. Met.
78
,
227
(
1996
).
55.
B. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Wiley, New York, 1976).
56.
C. L.
Gettinger
,
A. J.
Heeger
,
J. M.
Drake
, and
D. J.
Pine
,
J. Chem. Phys.
101
,
1673
(
1994
).
57.
T.-Q.
Nguyen
,
J.
Wu
,
V.
Doan
,
S. H.
Tolbert
, and
B. J.
Schwartz
,
Science
288
,
652
(
2000
).
58.
B. J.
Schwartz
,
T.-Q.
Nguyen
,
J.
Wu
, and
S. H.
Tolbert
,
Synth. Met.
116
,
35
(
2001
).
59.
R.
Chang
,
J. H.
Hsu
,
W. S.
Fann
,
J.
Yu
,
S. H.
Lin
,
Y. Z.
Lee
, and
S. A.
Chen
,
Chem. Phys. Lett.
317
,
153
(
2000
).
60.
M.
Zheng
,
F.
Bai
, and
D.
Zhu
,
J. Photochem. Photobiol., A
116
,
143
(
1998
).
61.
At concentrations this high, making a similar comparison for UV-visible absorption spectra is impossible because of the extremely large optical density of the solutions.
62.
U.
Lemmer
,
S.
Heun
,
R. F.
Mahrt
,
U.
Scherf
,
M.
Hopmeier
,
U.
Siegner
,
E. O.
Gobel
,
K.
Mullen
, and
H.
Bessler
,
Chem. Phys. Lett.
240
,
373
(
1995
).
63.
J. W.
Blatchford
,
S. W.
Jessen
,
L.-B.
Lin
,
T. L.
Gustafson
,
D.-K.
Fu
,
H.-L.
Wang
,
T. M.
Swager
,
A. G.
MacDiarmid
, and
A. J.
Epstein
,
Phys. Rev. B
54
,
9180
(
1996
).
64.
J.
Cornil
,
D. A. Dos
Santos
,
X.
Crispin
,
R.
Silbey
, and
J. L.
Bredas
,
J. Am. Chem. Soc.
120
,
1289
(
1998
).
65.
N.
Verdal
,
J. T.
Godbout
,
T. L.
Perkins
,
G. P.
Bartholomew
,
G. C.
Bazan
, and
A. M.
Kelley
,
Chem. Phys. Lett.
320
,
95
(
2000
).
66.
L. H.
Chen
,
D. W.
McBranch
,
H. L.
Wang
,
R.
Helgeson
,
F.
Wudl
, and
D. G.
Whitten
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
12287
(
1999
).
67.
R. M.
Jones
,
T. S.
Bergstedt
,
D. W.
McBranch
, and
D. G.
Whitten
,
J. Am. Chem. Soc.
123
,
6726
(
2001
).
68.
B. S.
Gaylord
,
S.
Wang
,
A. J.
Heeger
, and
G. C.
Bazan
,
J. Am. Chem. Soc.
123
,
6417
(
2001
).
69.
J.-H.
Hsu
,
W.
Fann
,
P.-H.
Tsao
,
K.-R.
Chuang
, and
S.-A.
Chen
,
J. Phys. Chem. A
103
,
2375
(
1999
).
70.
G. H.
Gelinck
,
J. M.
Warman
, and
E. G. J.
Staring
,
J. Phys. Chem.
100
,
5485
(
1996
).
71.
I. D. W.
Samuel
,
G.
Rumbles
,
C. J.
Collison
,
S. C.
Moratti
, and
A. B.
Holmes
,
Chem. Phys.
227
,
75
(
1998
).
72.
C. J.
Collison
,
L. J.
Rothberg
,
V.
Treemaneekarn
, and
Y.
Li
,
Macromolecules
34
,
2346
(
2001
).
73.
P.-G. deGennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).
74.
Yu. B.
Melinchenko
and
G. D.
Wignall
,
Phys. Rev. Lett.
78
,
686
(
1997
).
75.
I.
Borukhov
,
R. F.
Bruinsma
,
W. M.
Gelbart
, and
A. J.
Liu
,
Phys. Rev. Lett.
86
,
2182
(
2001
).
76.
B. Y.
Ha
and
A. J.
Liu
,
Phys. Rev. Lett.
79
,
1289
(
1997
).
77.
D. H.
Hu
,
J.
Yu
, and
P. F.
Barbara
,
J. Am. Chem. Soc.
121
,
6936
(
1999
).
78.
C. Y.
Yang
,
F.
Hide
,
M. A.
Diaz-Garcia
,
A. J.
Heeger
, and
Y.
Cao
,
Polymer
39
,
2299
(
1998
).
79.
B. A.
Weir
,
E. A.
Marseglia
,
S. M.
Chang
, and
A. B.
Holmes
,
Synth. Met.
101
,
154
(
1999
).
80.
T-Q.
Nguyen
,
B. J.
Schwartz
,
R. D.
Schaller
,
J. C.
Johnson
,
L. F.
Lee
,
L. H.
Haber
, and
R. J.
Saykally
,
J. Phys. Chem. B
105
,
5153
(
2001
).
81.
R. D. Schaller, L. F. Lee, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen, and B. J. Schwartz, J. Phys. Chem. B (submitted).
82.
A.
Dogariu
,
D.
Vacar
, and
A. J.
Heeger
,
Phys. Rev. B
58
,
10218
(
1998
).
83.
E. S.
Maniloff
,
V. I.
Klimov
, and
D. W.
McBranch
,
Phys. Rev. B
756
,
1876
(
1997
).
84.
The √t term in Eq. (1) accounts for the change in spatial distribution of the excitons as they annihilate each other over different distances. A similar model for exciton–exciton annihilation without this term is also often used. For more details on the use of both models to fit exciton–exciton annihilation dynamics, see Refs. 13, 82, and 83 as well as S. L. Dexheimer, in Optical and Electronic Properties of Fullerenes and Fullerene-Based Materials, edited by J. Shinar, Z. V. Vardeny, and Z. H. Kafafi (Dekker, New York, 2000), and references therein.
85.
The rate of exciton diffusion along the polymer backbone is much slower than the rate of exciton diffusion between chains; see
T.-Q.
Nguyen
,
J.
Wu
,
V.
Doan
,
B. J.
Schwartz
, and
S. H.
Tolbert
,
Science
288
,
652
(
2000
).
86.
Because errors in measuring the spot size and pulse energy at the sample make it difficult to precisely determine the excitation density in our experiments, the absolute values quoted for β are likely accurate only to within a factor of 2. The relative values, however, are precise to within a few percent, and thus we are certain that the value of β in the protonated film is twice as large as that in the neutral film. See Ref. 13 for more details about how β is calculated from the data like those shown in Fig. 6.
This content is only available via PDF.
You do not currently have access to this content.