We consider ring polymers in good solvents in the dilute limit. We determine the structure factor and the monomer–monomer distribution function. We compute accurately the asymptotic behavior of these functions for small and large momenta and distances by using field-theoretical methods. Phenomenological expressions with the correct asymptotic behaviors are also given.

1.
P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953).
2.
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).
3.
J. des Cloizeaux and G. Jannink, Les Polymères en Solution (Les Editions de Physique, Les Ulis, 1987);
English translation: Polymers in Solution: Their Modeling and Structure (Oxford University Press, Oxford, 1990).
4.
K. F. Freed, Renormalization-Group Theory of Macromolecules (Wiley, New York, 1987).
5.
Y. Oono, in Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1985), Vol. LXI, p. 301.
6.
P. G.
de Gennes
,
Phys. Lett. A
38
,
339
(
1972
).
7.
J. P.
Cotton
,
D.
Decker
,
B.
Farnoux
,
G.
Jannink
,
R.
Ober
, and
C.
Picot
,
Phys. Rev. Lett.
32
,
1170
(
1974
);
M.
Rawiso
,
R.
Duplessix
, and
C.
Picot
,
Macromolecules
20
,
630
(
1987
);
G.
Jerke
,
J. S.
Pedersen
,
S. U.
Egelhaaf
, and
P.
Schurtenberger
,
Phys. Rev. E
56
,
5772
(
1997
);
J. S.
Pedersen
and
P.
Schurtenberger
,
Europhys. Lett.
45
,
666
(
1999
).
8.
D.
Potschke
,
P.
Hickl
,
M.
Ballauff
,
P. O.
Astrand
, and
J. S.
Pedersen
,
Macromol. Theory Simul.
9
,
345
(
2000
).
9.
M.
Daoud
,
J. P.
Cotton
,
B.
Farnoux
,
G.
Jannink
,
G.
Sarma
,
H.
Benoit
,
R.
Duplessix
,
C.
Picot
, and
P. G.
de Gennes
,
Macromolecules
8
,
804
(
1975
).
10.
J.
des Cloizeaux
,
J. Phys. (France)
36
,
281
(
1975
).
11.
V. J.
Emery
,
Phys. Rev. B
11
,
239
(
1975
).
12.
C.
Aragão de Carvalho
,
S.
Caracciolo
, and
J.
Fröhlich
,
Nucl. Phys. B
215
,
209
(
1983
).
13.
R. R.
Netz
and
A.
Aharony
,
Phys. Rev. E
55
,
2267
(
1997
).
14.
P. Calabrese, A. Pelissetto, and E. Vicari, Phys. Rev E (to be published).
15.
M. E.
Fisher
and
B. J.
Hiley
,
J. Chem. Phys.
34
,
1253
(
1961
).
16.
M. E.
Fisher
,
J. Chem. Phys.
44
,
616
(
1966
).
17.
J.
Mazur
,
J. Res. Natl. Bur. Stand., Sect. A
69
,
355
(
1965
);
J.
Mazur
,
J. Chem. Phys.
43
,
4354
(
1965
).
18.
D. S.
McKenzie
and
M. A.
Moore
,
J. Phys. A
4
,
L82
(
1971
).
19.
D. S.
McKenzie
,
Phys. Rep.
27
,
35
(
1976
).
20.
J.
des Cloizeaux
,
Phys. Rev. A
10
,
1665
(
1974
);
J.
des Cloizeaux
,
J. Phys. (France)
41
,
223
(
1980
).
21.
S.
Caracciolo
,
M. S.
Causo
, and
A.
Pelissetto
,
J. Chem. Phys.
112
,
7693
(
2000
).
22.
The different proposals appearing in the literature and many old numerical results have been reviewed by Bishop and Clarke [
M.
Bishop
and
J. H. R.
Clarke
,
J. Chem. Phys.
94
,
3936
(
1991
)]. A list of more recent numerical results appears in Ref. 21.
23.
R. A.
Ferrell
and
D. J.
Scalapino
,
Phys. Rev. Lett.
34
,
200
(
1975
);
A. J.
Bray
,
Phys. Rev. B
14
,
1248
(
1976
).
24.
B.
Li
,
N.
Madras
, and
A. D.
Sokal
,
J. Stat. Phys.
80
,
661
(
1995
).
25.
P. Belohorec and B. G. Nickel, University of Guelph Report (unpublished).
26.
A.
Pelissetto
and
E.
Vicari
, e-print cond-mat/0012164.
27.
In three dimensions the most precise Monte Carlo estimate of Δ is Δ=0.517±0.007+0.010 (Ref. 25). Perturbative field theory gives a lower estimate (Ref. 32): Δ=0.478±0.010 (d=3 expansion) and Δ=0.486±0.016 (ε expansion). In two dimensions, the value of Δ is still the object of intense debate, some models showing Δ=1, others Δ=11/16 [
A. J.
Guttmann
and
I. G.
Enting
,
J. Phys. A
21
,
L165
(
1988
);
H.
Saleur
,
J. Phys. A
20
,
455
(
1987
);
A. R.
Conway
and
A. J.
Guttmann
,
J. Phys. A
26
,
1535
(
1993
);
A. R.
Conway
and
A. J.
Guttmann
,
Phys. Rev. Lett.
77
,
5284
(
1996
);
I.
Guim
,
H. W. J.
Blöte
, and
T. W.
Burkhardt
,
J. Phys. A
30
,
413
(
1997
);
S.
Caracciolo
,
M. S.
Causo
,
P.
Grassberger
, and
A.
Pelissetto
,
J. Phys. A
32
,
2931
(
1999
)]. These estimates should be compared with α=0.237 26(21) in three dimensions (Ref. 25) and α=12 in two dimensions. Thus, in all cases α<Δ.
28.
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th ed. (Academic, San Diego, 1980).
29.
J. C.
Le Guillou
and
J.
Zinn-Justin
,
Phys. Rev. Lett.
39
,
95
(
1977
);
J. C.
Le Guillou
and
J.
Zinn-Justin
,
Phys. Rev. B
21
,
3976
(
1980
).
30.
J. M.
Carmona
,
A.
Pelissetto
, and
E.
Vicari
,
Phys. Rev. B
61
,
15136
(
2000
).
31.
The renormalized coupling constant g can be expressed in terms of the second virial coefficient for a polydisperse ensemble of polymers, see
M.
Muthukumar
and
B. G.
Nickel
,
J. Chem. Phys.
80
,
5839
(
1989
);
M.
Muthukumar
and
B. G.
Nickel
,
J. Chem. Phys.
86
,
460
(
1987
).
32.
R.
Guida
and
J.
Zinn-Justin
,
J. Phys. A
31
,
8103
(
1998
).
33.
A.
Pelissetto
and
E.
Vicari
,
Nucl. Phys. B
519
,
626
(
1998
).
34.
A.
Pelissetto
and
E.
Vicari
,
Nucl. Phys. B
575
,
579
(
2000
).
35.
M.
Campostrini
,
A.
Pelissetto
,
P.
Rossi
, and
E.
Vicari
,
Phys. Rev. E
57
,
184
(
1998
).
36.
M.
Campostrini
,
A.
Pelissetto
,
P.
Rossi
, and
E.
Vicari
,
Phys. Rev. B
54
,
7301
(
1996
).
37.
This ratio is universal. However, it should be noted that we are comparing here the linear and the ring conformation for the same microscopic model, i.e., for polymers of the same chemical composition.
38.
S.
Caracciolo
,
M. S.
Causo
, and
A.
Pelissetto
,
Phys. Rev. E
57
,
R1215
(
1998
).
39.
D.
MacDonald
,
S.
Joseph
,
D. L.
Hunter
,
L. L.
Moseley
,
N.
Jan
, and
A. J.
Guttmann
,
J. Phys. A
33
,
5973
(
2000
).
40.
O.
Jagodzinski
,
E.
Eisenriegler
, and
K.
Kremer
,
J. Phys. I
2
,
2243
(
1992
).
41.
J. L.
Cardy
and
A. J.
Guttmann
,
J. Phys. A
26
,
2485
(
1993
).
42.
K. Y.
Lin
,
Physica A
275
,
197
(
2000
).
43.
B.
Nienhuis
,
Phys. Rev. Lett.
49
,
1062
(
1982
);
B.
Nienhuis
,
J. Stat. Phys.
34
,
731
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.