The basis for the conjecture that water’s Tg may be 165±5 K [Velikov, Borick, and Angell, Science 294, 2335 (2001)] has been examined. It is shown that (i) differential scanning calorimetry (DSC) scans provided by Hallbrucker and Mayer [J. Phys. Chem. 91, 503 (1987)], and used as a basis for the conjecture, do not represent the heat capacity of the assumed, slow-cooled glassy water or of hyperquenched glassy water, and (ii) there is no fundamental requirement that the excess heat capacity show a peak at T<Tg—instead the peak may appear at T<Tg, at Tg, or at T>Tg. On heating, the enthalpy of glasses produced by hyperquenching or rapid cooling begins to decrease at a much lower T than that of the glasses obtained by slow cooling. Annealing increases this temperature toward Tg, and the enthalpy decrease continues at T aboveTg. In the enthalpy relaxation region, the diffusion coefficient of the hyperquenched glassy state is higher than that of a slow-cooled glassy state at a given T, and a local minimum in the DSC scan does not appear at T<Tg in several glasses. These findings remove the basis for the conjecture that water’s Tg may be ∼165 K. Several analyses confirm that the known sigmoid-shape endotherm of glassy water represents the glass-softening range with onset temperature of 136 K. The DSC scans of a glassy state similar to that of water have been simulated by using a nonlinear, nonexponential enthalpy relaxation formalism. These show that a peak in the difference scan of the simulated glass appears above its Tg of 136 K.

1.
A.
Winter-Klein
, These, Paris, 8 Juillet 1938;
A.
Winter-Klein
,
J. Am. Ceram. Soc.
26
,
189
(
1943
).
2.
A. Q.
Tool
,
J. Am. Ceram. Soc.
29
,
240
(
1946
).
3.
R. O.
Davies
and
G. O.
Jones
,
Adv. Phys.
2
,
370
(
1953
).
4.
A. J.
Kovacs
,
Fortschr. Hochpolym.-Forsch.
3
,
394
(
1963
).
5.
G. W. Scherer, Relaxation in Glass and Composites (Wiley, New York, 1986).
6.
G. B. McKenna, in Comprehensive Polymer Science, edited by C. Booth and C. Price (Pergamon, Oxford, 1989), Vol. 2, Chap. 10, p. 311.
7.
I.
Hodge
,
J. Non-Cryst. Solids
169
,
211
(
1994
),
I.
Hodge
,
Science
267
,
1945
(
1995
).
8.
H.
Fujimori
,
H.
Fujita
, and
M.
Oguni
,
Bull. Chem. Soc. Jpn.
68
,
447
(
1995
).
9.
T.
Matsuo
and
O.
Yamamuro
,
Thermochim. Acta
330
,
155
(
1999
).
10.
H. S.
Chen
and
E.
Coleman
,
Appl. Phys. Lett.
28
,
245
(
1976
).
11.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
J. Phys. Chem.
93
,
2648
(
1989
).
12.
J.
Huang
and
P. K.
Gupta
,
J. Non-Cryst. Solids
151
,
175
(
1992
).
13.
S.
Ram
and
G. P.
Johari
,
Philos. Mag. B
61
,
299
(
1990
);
S.
Ram
and
G. P.
Johari
,
Philos. Mag. B
63
,
586
(
1991
).
14.
G. P.
Johari
,
S.
Ram
,
G.
Astl
, and
E.
Mayer
,
J. Non-Cryst. Solids
116
,
282
(
1990
).
15.
S.
Rüdisser
,
A.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
,
J. Phys. Chem.
101
,
266
(
1997
).
16.
G.
Sartor
and
G. P.
Johari
,
J. Phys. Chem.
101
,
8331
(
1997
).
17.
K.
Hofer
,
J.
Perez
, and
G. P.
Johari
,
Philos. Mag. Lett.
64
,
37
(
1991
).
18.
J. G.
Shim
and
G. P.
Johari
,
Philos. Mag. B
79
,
565
(
1999
).
19.
G. P.
Johari
and
J. G.
Shim
,
J. Non-Cryst. Solids
261
,
52
(
2000
).
20.
G. P.
Johari
,
G.
Sartor
, and
E.
Mayer
,
J. Polym. Sci., Part B: Polym. Phys.
32
,
683
(
1994
).
21.
G.
Sartor
,
E.
Mayer
, and
G. P.
Johari
,
Biophys. J.
66
,
249
(
1994
).
22.
G.
Sartor
and
G. P.
Johari
,
J. Phys. Chem.
100
,
10450
(
1996
).
23.
G. P.
Johari
and
G.
Sartor
,
J. Chem. Soc., Faraday Trans.
92
,
4521
(
1996
).
24.
G. P.
Johari
and
G.
Sartor
,
Nuovo Cimento D
20
,
2419
(
1998
).
25.
G. P.
Johari
,
Chem. Phys.
258
,
277
(
2000
).
26.
V.
Velikov
,
S.
Borick
, and
C. A.
Angell
,
Science
294
,
2335
(
2001
).
27.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
Nature (London)
330
,
522
(
1987
).
28.
E.
Mayer
,
J. Mol. Struct.
250
,
403
(
1991
).
29.
G. P.
Johari
,
A.
Hallbrucker
, and
E.
Mayer
,
Science
273
,
90
(
1996
).
30.
I.
Kohl
,
E.
Mayer
, and
A.
Hallbrucker
,
Phys. Chem. Chem. Phys.
2
,
1579
(
2000
).
31.
V. F. Petrenko and R. W. Whitworth, Physics of Ice (Oxford University Press, Oxford, 1999).
32.
A.
Hallbrucker
and
E.
Mayer
,
J. Phys. Chem.
91
,
503
(
1987
).
33.
R.
Gardon
and
O. S.
Narayanaswamy
,
J. Am. Ceram. Soc.
53
,
148
(
1990
).
34.
O. S.
Narayanaswamy
,
J. Am. Ceram. Soc.
54
,
691
(
1990
).
35.
C. T.
Moynihan
,
P. B.
Macedo
,
C. J.
Montrose
et al.,
Ann. N.Y. Acad. Sci.
279
,
15
(
1976
).
36.
I. M.
Hodge
and
A. R.
Berens
,
Macromolecules
15
,
762
(
1982
).
37.
K.
Pathmanathan
and
G. P.
Johari
,
J. Polym. Sci., Part B: Polym. Phys.
28
,
675
(
1990
).
38.
K.
Pathmanathan
and
G. P.
Johari
,
J. Chem. Soc., Faraday Trans.
90
,
1143
(
1994
).
39.
H.
Xu
,
J. K.
Vij
, and
V. J.
McBrierty
,
Polymer
35
,
227
(
1994
).
40.
G. P.
Johari
,
J. Chem. Phys.
105
,
7079
(
1996
).
41.
K.
Hofer
,
E.
Mayer
, and
G. P.
Johari
,
J. Phys. Chem.
94
,
2689
(
1990
).
42.
G. P.
Johari
,
Phys. Chem. Chem. Phys.
2
,
1567
(
2000
).
43.
G. P.
Johari
,
G.
Astl
, and
E.
Mayer
,
J. Chem. Phys.
92
,
809
(
1990
), see Fig. 1 (bottom).
44.
E.
Mayer
,
A.
Hallbrucker
,
G.
Sartor
, and
G. P.
Johari
,
J. Phys. Chem.
99
,
5161
(
1995
).
45.
C. A.
Tulk
,
D. D.
Klug
,
R.
Brandenhorst
,
P.
Sharpe
, and
J. A.
Ripmeester
,
J. Chem. Phys.
109
,
8478
(
1998
).
46.
M.
Sugisaki
,
H.
Suga
, and
S.
Seki
,
J. Chem. Soc. Jpn.
41
,
2591
(
1968
).
47.
O.
Yamamuro
,
M.
Oguni
,
T.
Matsuo
, and
H.
Suga
,
J. Phys. Chem. Solids
48
,
935
(
1987
).
48.
Y. P.
Handa
and
D. D.
Klug
,
J. Phys. Chem.
92
,
3323
(
1988
).
49.
G. P.
Johari
,
J. Chem. Phys.
112
,
8573
(
2000
). See Fig. 4.
50.
Hallbrucker
,
E.
Mayer
, and
G. P.
Johari
,
Philos. Mag. B
60
,
179
(
1989
).
51.
G. P.
Johari
,
J. Chem. Phys.
112
,
7518
(
2000
).
52.
M.
Mizukami
,
H.
Fujimori
, and
M.
Oguni
,
J. Phys.: Condens. Matter
7
,
6747
(
1995
).
53.
M.
Hanaya
,
M.
Nakayama
, and
M.
Oguni
,
J. Non-Cryst. Solids
172–174
,
608
(
1994
).
54.
S. S.
Chang
and
A. B.
Bestul
,
J. Chem. Thermodyn.
6
,
325
(
1974
).
55.
I.
Tsukushi
,
O.
Yamamuro
,
K.
Sadanami
,
M.
Nishizawa
, and
T.
Matsuo
,
Rev. Sci. Instrum.
69
,
179
(
1998
).
56.
G.
Sartor
and
G. P.
Johari
,
J. Phys. Chem.
100
,
16962
(
1996
).
57.
G. P.
Johari
,
J. Chem. Phys.
113
,
751
(
2000
);
G. P.
Johari
,
Chem. Phys.
265
,
217
(
2001
).
58.
G. P.
Johari
,
J. Phys. Chem. B
105
,
3600
(
2001
);
G. P.
Johari
,
J. Non-Cryst. Solids
288
,
148
(
2001
);
G. P.
Johari
,
J. Chem. Phys.
116
,
1744
(
2002
).
59.
G. P.
Johari
,
J. Mol. Struct.
520
,
249
(
2000
).
60.
G. P.
Johari
,
M.
Beiner
,
C.
Macdonald
, and
J.
Wang
,
J. Non-Cryst. Solids
278
,
58
(
2000
).
61.
G. P.
Johari
,
J. Chem. Phys.
115
,
3274
(
2001
).
62.
This value is subject to errors, because studies on glass-softening of other materials since 1987 have shown that accurate and self-consistent values can be obtained only by fitting a quantitative model to the endothermic part of the DSC scan. For a review of this subject Refs. 7, 13, and 36 may be consulted.
63.
G. P.
Johari
,
J. Phys. Chem. B
102
,
4711
(
1998
). It may be noted here that in a recent study of the penetration of a blunted indentor into supercooled cyclo-hexanol crystal I, large spikes were observed in the measured capacitance when its crystal I transformed to crystal II irreversibly on heating. Also the indentor in this study did not descend to make contact with the sample’s metal rest on heating until crystal I melted. In the study of LDA, spikes in capacitance which would be expected if it transformed to cubic ice were not observed. The indentor descended slowly and smoothly until it was in contact with the metal rest and the circuit with the measurement assembly became electrically shorted.
This content is only available via PDF.
You do not currently have access to this content.