We have performed a comprehensive study of the electronic structure and magnetic properties of structurally characterized models for diiron-oxo proteins. Results from Kohn–Sham density functional theory show that two complexes, with formula Fe2(μ-O)(μ-O2CCH3)2(HBpz3)2 and [Fe2(μ-OH)(μ-O2CCH3)2(HBpz3)2]+, are strongly and weakly antiferromagnetically coupled, respectively, in agreement with experiment. The physical origin of the stronger and weaker exchange typically measured for oxo- and hydroxo-bridged diiron complexes, respectively, has been elucidated. The main superexchange pathways giving rise to molecular antiferromagnetism in both complexes have been identified. The dominant pathway in the oxo-bridged complex, Fe1(dxz):μ-O(px):Fe2(dxz), was formed by π interactions whereas that of the hydroxo-bridged, Fe1(dz2):μ-OH(p):Fe2(dz2), was formed by σ interactions. We also found a pathway mediated by the bridging acetates, Fe1(dx2−y2):bis(μ-acetato):Fe2(dx2−y2), which induces weak antiferromagnetism in the oxo-bridged complex but is significantly more important in the hydroxo-bridged complex. The antiferromagnetic exchange constants that parameterize the Heisenberg Hamiltonian H=JS1⋅S2 have been predicted for both, strongly and weakly, coupled complexes. Overall, the signs, trends, and magnitudes of the theoretical values (Jμ-Ocalc=+152.7 cm−1,Jμ-OHcalc=+23.3 cm−1) were in excellent agreement with experiment. The geometries of the complete molecular structures have been optimized in C2v symmetry and used to calculate molecular properties such as atomic charges and spin densities. The electronic configurations (Fe:4s0.293d5.93,μ-O:2s1.922p4.99;Fe:4s0.303d5.82,μ-OH:2s1.822p5.25,H:1s0.51) of the respective binuclear cores revealed relatively high occupancies for the nominally ferric ions, thus reflecting a donating character of their immediate N3O3 coordination. In addition, the diiron-oxo protein hemerythrin has been discussed. Theoretical and structural considerations indicated that the oxo-bridged diferric complex considered herein models extremely well the antiferromagnetic behavior of azidomet- and azidometmyo-hemerythrin. Finally, the magnetic behavior of closely related oxo-bridged diferric and hydroxo-bridged diferrous complexes containing Me3TACN capping ligands has been explained in light of the results presented in this work.

1.
W. H.
Armstrong
and
S. J.
Lippard
,
J. Am. Chem. Soc.
105
,
4837
(
1983
).
2.
W. H.
Armstrong
and
S. J.
Lippard
,
J. Am. Chem. Soc.
106
,
4632
(
1984
).
3.
W. H.
Armstrong
,
A.
Spool
,
G. C.
Papaefthymiou
,
R. B.
Frankel
, and
S. J.
Lippard
,
J. Am. Chem. Soc.
106
,
3653
(
1984
).
4.
J. A. R.
Hartman
,
R. L.
Rardin
,
P.
Chaudhuri
,
K.
Pohl
,
K.
Wieghardt
,
B.
Nuber
,
J.
Weiss
,
G. C.
Papaefthymiou
,
R. B.
Frankel
, and
S. J.
Lippard
,
J. Am. Chem. Soc.
109
,
7387
(
1987
).
5.
R.
Hotzelmann
,
K.
Wieghardt
,
U.
Flörke
,
H.-J.
Haupt
,
D.
Weatherburn
,
J.
Bonvoisin
,
G.
Blondin
, and
J.
Girerd
,
J. Am. Chem. Soc.
114
,
1683
(
1992
).
6.
L.
Que
, Jr.
and
A. E.
True
,
Prog. Inorg. Chem.
38
,
97
(
1990
).
7.
P.
Chaudhuri
,
M.
Winter
,
H. J.
Küppers
,
K.
Wieghardt
,
B.
Nuber
, and
J.
Weiss
,
Inorg. Chem. Commun.
26
,
3302
(
1987
).
8.
D. M.
Kurtz
,
JBIC
2
,
159
(
1997
).
9.
D. M.
Kurtz
,
Chem. Rev.
90
,
585
(
1990
).
10.
J. H.
Rodriguez
,
H. N.
Ok
,
Y. M.
Xia
,
P. G.
Debrunner
,
B. E.
Hinrichs
,
T.
Meyer
, and
N.
Packard
,
J. Phys. Chem.
100
,
6849
(
1996
).
11.
J. H.
Rodriguez
,
Y. M.
Xia
,
P. G.
Debrunner
,
P.
Chaudhuri
, and
K.
Wieghardt
,
J. Am. Chem. Soc.
118
,
7542
(
1996
).
12.
J. H.
Rodriguez
,
Y. M.
Xia
, and
P. G.
Debrunner
,
J. Am. Chem. Soc.
121
,
7846
(
1999
).
13.
A. P.
Ginsberg
,
Inorg. Chim. Acta
5
,
45
(
1971
).
14.
C. A.
Brown
,
G. J.
Remar
,
R. L.
Musselman
, and
E. I.
Solomon
,
Inorg. Chem.
34
,
688
(
1995
).
15.
P. W. Anderson, in Magnetism, edited by G. T. Rado and H. Suhl (Academic, New York, 1963), Vol. 1.
16.
J. B.
Goodenough
,
Phys. Rev.
100
,
564
(
1955
).
17.
J. B.
Goodenough
,
J. Phys. Chem. Solids
6
,
287
(
1958
).
18.
J. B. Goodenough, Magnetism and the Chemical Bond (Interscience, New York, 1963).
19.
J.
Kanamori
,
J. Phys. Chem. Solids
10
,
87
(
1959
).
20.
P. W.
Anderson
,
Phys. Rev.
115
,
2
(
1959
).
21.
P. J.
Hay
,
J. C.
Thibeault
, and
R. J.
Hoffmann
,
J. Am. Chem. Soc.
97
,
4884
(
1975
).
22.
O. Kahn, Molecular Magnetism (VCH, New York, 1993).
23.
A. Bencini and D. Gatteschi, EPR of Exchange Coupled Systems (Springer Verlag, Berlin, 1990).
24.
J. Owen and E. A. Harris, in Electron Paramagnetic Resonance, edited by S. Geschwind (Plenum, New York, 1972).
25.
T. C.
Brunold
and
E. I.
Solomon
,
J. Am. Chem. Soc.
121
,
8277
(
1999
).
26.
K.
Fink
,
R.
Fink
, and
V.
Staemmler
,
Inorg. Chem.
33
,
6219
(
1994
).
27.
C. A.
Brown
,
M. A.
Pavlosky
,
T. E.
Westre
,
Y.
Zhang
,
B.
Hedman
,
K. O.
Hodgson
, and
E. I.
Solomon
,
J. Am. Chem. Soc.
117
,
715
(
1995
).
28.
X. G.
Zhao
,
W. H.
Richardson
,
J. L.
Chen
,
J.
Li
,
L.
Noodleman
,
H. L.
Tsai
, and
D. N.
Hendrickson
,
Inorg. Chem.
36
,
1198
(
1997
).
29.
J. E.
McGrady
and
R.
Stranger
,
J. Am. Chem. Soc.
119
,
8512
(
1997
).
30.
V.
Barone
,
A.
Bencini
,
I.
Ciofini
,
C. A.
Daul
, and
F.
Totti
,
J. Am. Chem. Soc.
120
,
8357
(
1998
).
31.
C.
Adamo
,
V.
Barone
,
A.
Bencini
,
F.
Totti
, and
I.
Ciofini
,
Inorg. Chem.
38
,
1996
(
1999
).
32.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
33.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Clarendon, Oxford, 1989).
34.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
(
1996
).
35.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
36.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
37.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
38.
J. H.
Rodriguez
,
D. E.
Wheeler
, and
J. K.
McCusker
,
J. Am. Chem. Soc.
120
,
12051
(
1998
).
39.
W. J. Hehre, L. Radom, P. v.R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
40.
E. J.
Baerends
and
O. V.
Gritsenko
,
J. Phys. Chem. A
101
,
5383
(
1997
).
41.
O. V.
Gritsenko
and
E. J.
Baerends
,
Theor. Chem. Acc.
96
,
44
(
1997
).
42.
L. Noodleman, D. A. Case, and E. J. Baerends, in Density Functional Methods in Chemistry, edited by J. K. Labanowski and J. W. Andzelm (Springer-Verlag, New York, 1991).
43.
L.
Noodleman
,
C. Y.
Peng
,
D. A.
Case
, and
J. M.
Mouesca
,
Coord. Chem. Rev.
144
,
199
(
1995
).
44.
C.
Adamo
and
V.
Barone
,
Chem. Phys. Lett.
274
,
242
(
1997
).
45.
J. J.
Girerd
,
M. F.
Charlot
, and
O.
Kahn
,
Mol. Phys.
34
,
1063
(
1977
).
46.
J. J.
Girerd
,
Y.
Journaux
, and
O.
Kahn
,
Chem. Phys. Lett.
82
,
534
(
1981
).
47.
L.
Noodleman
,
J. Chem. Phys.
74
,
5737
(
1981
).
48.
K.
Yamaguchi
,
H.
Fukui
, and
T.
Fueno
,
Chem. Lett.
149
,
625
(
1986
).
49.
K.
Yamaguchi
,
F.
Jensen
,
A.
Dorigo
, and
K. N.
Houk
,
Chem. Phys. Lett.
149
,
537
(
1988
).
50.
S.
Yamanaka
,
T.
Kawakami
,
H.
Nagao
, and
K.
Yamaguchi
,
Chem. Phys. Lett.
231
,
25
(
1994
).
51.
W.
Heisenberg
,
Z. Phys.
49
,
619
(
1928
).
52.
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
123
,
714
(
1929
).
53.
P. M.
Levy
,
Phys. Rev.
177
,
509
(
1969
).
54.
J. H.
Van Vleck
,
Phys. Rev.
45
,
405
(
1934
).
55.
P. W.
Anderson
,
Phys. Rev.
79
,
350
(
1950
).
56.
K. Yamaguchi, Y. Takahara, and T. Fueno, in Applied Quantum Chemistry, edited by Jr. V. H. Smith, H. F. Schaefer III, and K. Morokuma (D. Reidel, Dordrecht, 1986).
57.
Several relatively similar expressions for J have been reported by various authors (Refs. 47, 48, 100). Equation (3) was reported by Yamaguchi et al. (Ref. 50). In the Appendix we present a more detailed derivation of this expression.
58.
J.
Wang
,
A. D.
Becke
, and
V. H.
Smith
, Jr.
,
J. Chem. Phys.
102
,
3477
(
1995
).
59.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
60.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
61.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
62.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
63.
D. R.
Hartree
,
Proc. Cambridge Philos. Soc.
24
,
89
(
1927
).
64.
V.
Fock
,
Physik
61
,
126
(
1930
).
65.
D. R. Hartree, The Calculation of Atomic Structure (Wiley, New York, 1957).
66.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
67.
J. C. Slater, Quantum Theory of Molecules and Solids. Vol. 4: The Self-Consistent Field for Molecules and Solids (McGraw-Hill, New York, 1974).
68.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
108
,
664
(
1998
).
69.
R.
Ditchfield
,
W. J.
Hehre
, and
J. A.
Pople
,
J. Chem. Phys.
54
,
724
(
1971
).
70.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
71.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
72.
R.
Krishnan
,
M. J.
Frisch
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
4244
(
1980
).
73.
A. J. H.
Wachters
,
J. Chem. Phys.
52
,
1033
(
1970
).
74.
P. J.
Hay
,
J. Chem. Phys.
66
,
4377
(
1977
).
75.
K.
Raghavachari
and
G. W.
Trucks
,
J. Chem. Phys.
91
,
1062
(
1989
).
76.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 94, Revision E.2, Gaussian, Inc., Pittsburgh, PA, 1995.
77.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.4, Gaussian, Inc., Pittsburgh, PA, 1998.
78.
M. J. Frisch, A Frisch, and J. B. Foresman, GAUSSIAN 94 User’s Manual (Gaussian Inc., Pittsburgh, 1995).
79.
MOLDEN, Molecular Density Package, G. Schaftenaar (1991), CAOS/CAMM Center Nijmegen, The Netherlands.
80.
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
78
,
4066
(
1983
).
81.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
82.
NBO 4.0, E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison (1996).
83.
S. M.
Gorun
and
S. J.
Lippard
,
Inorg. Chem.
30
,
1625
(
1991
).
84.
D. E.
Wheeler
,
J. H.
Rodriguez
, and
J. K.
McCusker
,
J. Phys. Chem. A
103
,
4101
(
1999
).
85.
P. E. M. Siegbahn, in New Methods in Computational Quantum Mechanics, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1996).
86.
H. B.
Schlegel
,
J. Chem. Phys.
84
,
4530
(
1986
).
87.
H. B.
Schlegel
,
J. Phys. Chem.
92
,
3075
(
1988
).
88.
Pople et al. (Ref. 101) have argued that the expectation values 〈S2 arising from Kohn–Sham wave functions should be larger than the theoretical values. However, this is allowed since the Kohn–Sham wave function is not the wave function of the real (interacting) system.
89.
J.
Kondo
,
Prog. Theor. Phys., Japan
18
,
541
(
1957
).
90.
N. L.
Huang
and
R.
Orbach
,
Phys. Rev.
154
,
487
(
1967
).
91.
D. E.
Rimmer
,
J. Phys. C
1
,
329
(
1969
).
92.
The Hex=JS1⋅S2 representation of the Heisenberg Hamiltonian is not universal. All the results given in this work are expressed in terms of this representation. Other notations include: Hex=−JS1⋅S2, and Hex=−2JS1⋅S2. To convert to these latter two notations, simply multiply J by −1 or −12, respectively.
93.
A. L.
Feig
and
S. J.
Lippard
,
Chem. Rev.
94
,
759
(
1994
).
94.
S. J. Lippard and J. M. Berg, Principles of Bioinorganic Chemistry (University Science Books, Mill Valley, CA, 1994).
95.
M. A.
Holmes
and
R. E.
Stenkamp
,
J. Mol. Biol.
220
,
723
(
1991
).
96.
J. L.
York
and
A. J.
Bearden
,
Biochemistry
9
,
4549
(
1970
).
97.
C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).
98.
A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Dover, New York, 1986).
99.
See EPAPS Document No. E-JCPSA6-116-707214 for tables containing optimized cartesian coordinates and extensive descriptions of molecular orbitals.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
100.
A. A.
Ovchinnikov
and
J. K.
Labanowski
,
Phys. Rev. A
53
,
3946
(
1996
).
101.
J. A.
Pople
,
P. M. W.
Gill
, and
N.
Handy
,
Int. J. Quantum Chem.
56
,
303
(
1995
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.