The nonequilibrium dynamics of a binary Lennard-Jones mixture in a simple shear flow is investigated by means of molecular dynamics simulations. The range of temperature T investigated covers both the liquid, supercooled, and glassy states, while the shear rate γ covers both the linear and nonlinear regimes of rheology. The results can be interpreted in the context of a nonequilibrium, schematic mode-coupling theory developed recently, which makes the theory applicable to a wide range of soft glassy materials. The behavior of the viscosity η(T,γ) is first investigated. In the nonlinear regime, strong shear-thinning is obtained, η∼γ−α(T), with α(T)≃23 in the supercooled regime. Scaling properties of the intermediate scattering functions are studied. Standard “mode-coupling properties” of factorization and time superposition hold in this nonequilibrium situation. The fluctuation-dissipation relation is violated in the shear flow in a way very similar to that predicted theoretically, allowing for the definition of an effective temperature Teff for the slow modes of the fluid. Temperature and shear rate dependencies of Teff are studied using density fluctuations as an observable. The observable dependence of Teff is also investigated. Many different observables are found to lead to the same value of Teff, suggesting several experimental procedures to access Teff. It is proposed that a tracer particle of large mass mtr may play the role of an “effective thermometer.” When the Einstein frequency of the tracers becomes smaller than the inverse relaxation time of the fluid, a nonequilibrium equipartition theorem holds with 〈mtrvz2〉=kBTeff, where vz is the velocity in the direction transverse to the flow. This last result gives strong support to the thermodynamic interpretation of Teff and makes it experimentally accessible in a very direct way.

1.
R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).
2.
P.
Sollich
,
F.
Lequeux
,
P.
Hébraud
, and
M. E.
Cates
,
Phys. Rev. Lett.
78
,
2020
(
1997
);
P.
Sollich
,
Phys. Rev. E
58
,
738
(
1998
).
3.
L. C. E. Struik, Physical Aging in Amorphous Polymers and other Materials (Elsevier, Amsterdam, 1978).
4.
J.-Ph. Bouchaud, L. F. Cugliandolo, J. Kurchan, and M. Mézard, Spin Glasses and Random Fields, edited by A. P. Young (World Scientific, Singapore, 1998).
5.
L.
Cipelletti
,
S.
Manley
,
R. C.
Ball
, and
D. A.
Weitz
,
Phys. Rev. Lett.
84
,
2275
(
2000
).
6.
M.
Cloitre
,
R.
Borrega
, and
L.
Leibler
,
Phys. Rev. Lett.
85
,
4819
(
2000
).
7.
L.
Ramos
and
L.
Cipelletti
,
Phys. Rev. Lett.
87
,
245503
(
2001
).
8.
M.
Kroon
,
G.
Wegdam
, and
R.
Sprik
,
Phys. Rev. E
54
,
1
(
1996
);
D.
Bonn
,
H.
Tanaka
,
G.
Wegdam
,
H.
Kellay
, and
J.
Meunier
,
Europhys. Lett.
45
,
52
(
1999
);
B.
Abou
,
D.
Bonn
, and
J.
Meunier
,
Phys. Rev. E
64
,
021510
(
2001
).
9.
A.
Knaebel
,
M.
Bellour
,
J.-P.
Munch
,
V.
Viasnoff
,
F.
Lequeux
, and
J. L.
Harden
,
Europhys. Lett.
52
,
73
(
2000
).
10.
C.
Dérec
,
A.
Ajdari
, and
F.
Lequeux
,
Faraday Discuss.
112
,
195
(
1999
);
C.
Dérec
,
A.
Ajdari
, and
F.
Lequeux
,
Eur. Phys. J. E
4
,
355
(
2001
).
11.
S. M.
Clarke
,
F.
Elias
, and
E. M.
Terentjev
,
Eur. Phys. J. E
2
,
335
(
2000
).
12.
H.
Horner
,
Z. Phys. B: Condens. Matter
100
,
243
(
1996
);
L. F.
Cugliandolo
,
J.
Kurchan
,
P. Le
Doussal
, and
L.
Peliti
,
Phys. Rev. Lett.
78
,
350
(
1997
);
F.
Thalmann
,
Eur. Phys. J. B
19
,
49
(
2001
);
F.
Thalmann
,
Eur. Phys. J. B
19
,
65
(
2001
).
13.
L.
Berthier
,
J.-L.
Barrat
, and
J.
Kurchan
,
Phys. Rev. E
61
,
5464
(
2000
).
14.
U.
Bengtzelius
,
W.
Götze
, and
A.
Sjölander
,
J. Phys. C
17
,
5915
(
1984
);
E.
Leutheusser
,
Phys. Rev. A
29
,
2765
(
1984
).
15.
T. R.
Kirkpatrick
and
P. G.
Wolynes
,
Phys. Rev. A
35
,
3072
(
1987
);
T. R.
Kirkpatrick
and
D.
Thirumalai
,
Phys. Rev. B
36
,
5388
(
1987
).
16.
W. Götze, in Liquids, Freezing and Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991);
W.
Götze
and
L.
Sjögren
,
Rep. Prog. Phys.
55
,
241
(
1992
);
W.
Götze
,
J. Phys.: Condens. Matter
11
,
A1
(
1999
).
17.
J.-P.
Bouchaud
,
L. F.
Cugliandolo
,
J.
Kurchan
, and
M.
Mézard
,
Physica A
226
,
243
(
1996
).
18.
A.
Latz
,
J. Phys.: Condens. Matter
12
,
6353
(
2000
);
A.
Latz
, e-print cond-mat/0106086.
19.
L. F.
Cugliandolo
,
J.
Kurchan
, and
L.
Peliti
,
Phys. Rev. E
55
,
3898
(
1997
).
20.
L. F.
Cugliandolo
and
J.
Kurchan
,
Phys. Rev. Lett.
71
,
173
(
1993
).
21.
R.
Yamamoto
and
A.
Onuki
,
Europhys. Lett.
40
,
61
(
1997
);
R.
Yamamoto
and
A.
Onuki
,
Phys. Rev. E
58
,
3515
(
1998
).
22.
A. J.
Liu
and
S. R.
Nagel
,
Nature (London)
396
,
21
(
1998
).
23.
S. A.
Langer
and
A. J.
Liu
,
Europhys. Lett.
49
,
68
(
2000
);
I. K.
Ono
,
C. S.
O’Hern
,
S. A.
Langer
,
A. J.
Liu
, and
S. R.
Nagel
, e-print cond-mat/0110276.
24.
P.
Hébraud
and
F.
Lequeux
,
Phys. Rev. Lett.
78
,
4657
(
1997
).
25.
L. F.
Cugliandolo
,
J.
Kurchan
, and
P. Le
Doussal
,
Phys. Rev. Lett.
76
,
2390
(
1996
).
26.
L. F.
Cugliandolo
and
J.
Kurchan
,
Physica A
263
,
242
(
1999
);
L. F.
Cugliandolo
and
J.
Kurchan
,
J. Phys. Soc. Jpn.
69
,
247
(
2000
).
27.
S.
Fielding
and
P.
Sollich
,
Phys. Rev. Lett.
88
,
050603
(
2002
).
28.
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
52
,
4134
(
1995
);
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. E
51
,
4626
(
1995
);
W.
Kob
and
H. C.
Andersen
,
Phys. Rev. Lett.
73
,
1376
(
1994
).
29.
Note that in previous works (Refs. 28 and 30) a different time unit, τ=(mAσAA2/48εAA)1/2, is often used when dealing with Lennard-Jones particles.
30.
W.
Kob
and
J.-L.
Barrat
,
Phys. Rev. Lett.
78
,
4581
(
1997
);
W.
Kob
and
J.-L.
Barrat
,
Europhys. Lett.
46
,
637
(
1999
);
W.
Kob
and
J.-L.
Barrat
,
Eur. Phys. J. B
13
,
319
(
2000
).
31.
D. J. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990);
http://rsc.anu.edu.au/∼evans/evansmorrissbook.htm
32.
M. Allen and D. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).
33.
Strictly speaking, it is not impossible to observe inhomogeneous flow under such conditions, see, e.g., Ref. 34; such instabilities, however, seem to correspond to inverse shear rates of the order of microscopic oscillation times, higher than those we are using.
34.
M.
Stevens
and
M. O.
Robbins
,
Phys. Rev. E
48
,
3778
(
1993
).
35.
As discussed in Ref. 34, potential problems implying various thermostats are expected only in fluid systems where the shear rate is such that a particle moves by an appreciable fraction of its diameter on a phonon period. In our simulation, even the larger shear rate is (γ=0.1) is not in this range.
36.
J. D. Ferry, Viscoelatic Properties of Polymers (Wiley, New York, 1980).
37.
M. O.
Robbins
and
M. H.
Müser
, in Handbook of Modern Tribology, edited by B. Bhushan (CRC, Boca Raton, 2001);
M. O.
Robbins
and
M. H.
Müser
, e-print cond-mat/0001056.
38.
V.
Trappe
,
V.
Prasad
,
L.
Cipelletti
,
P. N.
Segre
, and
D. A.
Weitz
,
Nature (London)
411
,
772
(
2001
).
39.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
,
J. Phys. Chem.
100
,
13200
(
1996
).
40.
D. M.
Heyes
,
J. J.
Kim
,
C. J.
Montrose
, and
T. A.
Litovitz
,
J. Chem. Phys.
73
,
3987
(
1980
).
41.
L. F.
Cugliandolo
and
G.
Lozano
,
Phys. Rev. Lett.
80
,
4979
(
1998
).
42.
L.
Berthier
,
L. F.
Cugliandolo
, and
J. L.
Iguain
,
Phys. Rev. E
63
,
051302
(
2001
).
43.
J.-L.
Barrat
and
L.
Berthier
,
Phys. Rev. E
63
,
012503
(
2001
).
44.
T. S.
Grigera
and
N. E.
Israeloff
,
Phys. Rev. Lett.
83
,
5038
(
1999
).
45.
L.
Bellon
,
S.
Ciliberto
, and
C.
Laroche
,
Europhys. Lett.
53
,
511
(
2001
);
L.
Bellon
and
S.
Ciliberto
, Physica D, cond-mat/0201224.
46.
L. Bellon, Ph.D. thesis, Ecole Normale Supérieure de Lyon (2001).
47.
D.
Hérissonr
and
M.
Ocio
, cond-mat/0112378.
48.
J.-P.
Bouchaud
, in Soft and Fragile Matter, Nonequilibrium Dynamics, Metastability and Flow, edited by M. E. Cates and M. R. Evans (Institute of Physics, Bristol, 2000);
J.-P.
Bouchaud
, e-print cond-mat/9910387.
49.
See, e.g., P. Pusey, in Liquids, Freezing and Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991).
50.
G.
Parisi
,
Phys. Rev. Lett.
79
,
3660
(
1997
).
51.
R. Di
Leonardo
,
L.
Angelani
,
G.
Parisi
, and
G.
Ruocco
,
Phys. Rev. Lett.
84
,
6054
(
2000
).
52.
M.
Sellitto
,
Eur. Phys. J. B
4
,
135
(
1998
).
53.
H.
Makse
and
J.
Kurchan
,
Nature (London)
415
,
614
(
2002
).
54.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic, London, 1986).
55.
Obviously, it is not possible to achieve experimentally the situation of large mass and small tracer size. Our goal here was to realize in the simplest possible way a “slow” degree of freedom. As indicated in the discussion, we expect that the important word here is “slow.” Actual tracers (Brownian particles), which are also “large” particles, are expected to feel the slow components of the fluid motion essentially in the same way as the small, heavy tracers we are considering.
56.
J.
Perrin
,
Ann. Chim. Phys.
18
,
1
(
1909
).
This content is only available via PDF.
You do not currently have access to this content.