The use of the polarizable continuum model to develop ab initio effective pair potentials is extended to multicomponent solutions. The methodology takes into account nonadditivity effects on pair interactions computing wave functions perturbed by the solvent. Ca2+–water and Ca2+–ammonia potentials suitable for aqueous ammonia solutions are presented. These effective ab initio pair potentials present smaller binding energies with respect to strictly ab initio two-body potentials. The reduction is higher in Ca2+–ammonia (28%) than in Ca2+–water (22%) and brings to a small gap the difference between the binding energies of the two ligands with Ca2+ when solvent effects are considered. As a first test, metal-ligand clusters of different size and composition have been studied. The comparison with restricted Hartree–Fock ab initio calculations shows good agreement for the largest clusters considered. Results confirm that the presented methodology, based on the polarizable continuum model, describes in a proper way the interactions in the condensed phase, where the ion completes its coordination sphere. The cluster results also show that ammonia can displace water in the first ion coordination with a tendency to change the coordination number from 8 to 9 when the ion is fully surrounded by the former, the ninth ammonia molecule being positioned in an intermediate situation between the first and the second coordination shells.

1.
B. E. Conway, Ionic Hydration and Biophysics (Elsevier, Amsterdam, 1981).
2.
J. P.
Hunt
and
H. L.
Friedman
,
Prog. Inorg. Chem.
30
,
359
(
1983
).
3.
Ion Solvation, edited by Y. Marcus (Wiley, Chichester, 1986).
4.
The Physics and Chemistry of Aqueous Ionic Solutions, edited by M. C. Bellisent-Funel and G. W. Neilson, NATO ASI Series C Vol. 205 (Reidel, Dordrecht, 1987).
5.
Y.
Marcus
,
Chem. Rev.
88
,
1475
(
1988
).
6.
M. Magini, G. Licheri, G. Paschina, G. Piccaluga, and G. Pinna, X-Ray Diffraction of Ions in Aqueous Solutions: Hydration and Complex Formation (CRC Press, Boca Raton, FL, 1988).
7.
Structure and Dynamics of Solutions, edited by H. Ohtaki and H. Yamatera (Elsevier, Amsterdam, 1992).
8.
H.
Ohtaki
and
T.
Radnai
,
Chem. Rev.
93
,
1157
(
1993
).
9.
S. F.
Lincoln
and
A. E.
Merbach
,
Adv. Inorg. Chem.
42
,
1
(
1995
).
10.
The Chemistry of Aqua Ions, edited by D. T. Richens (Wiley, Chichester, 1997).
11.
Physical Chemistry of Electrolyte Solutions, edited by J. M. Barthel, H. Krienke, and W. Kunz (Steinkopff, Darmstadt, 1998).
12.
L.
Helm
and
A. E.
Merbach
,
Coord. Chem. Rev.
187
,
151
(
1999
).
13.
J. Gao, Reviews in Computational Chemistry (VCH, New York, 1996), Vol. 7, Chap. 3.
14.
R.
Carr
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
15.
T.
Kerdcharoen
,
K. R.
Liedl
, and
B. M.
Rode
,
Chem. Phys.
211
,
313
(
1996
).
16.
A.
Tongraar
,
K. R.
Liedl
, and
B. M.
Rode
,
J. Phys. Chem. A
101
,
6299
(
1997
).
17.
A.
Berces
,
T.
Nukada
,
P.
Margl
, and
T.
Ziegler
,
J. Phys. Chem. A
103
,
9693
(
1999
).
18.
D.
Marx
,
M.
Sprik
, and
M.
Parrinello
,
Chem. Phys. Lett.
273
,
360
(
1997
).
19.
A.
Tongraar
,
K. R.
Liedl
, and
B. M.
Rode
,
J. Phys. Chem. A
102
,
10340
(
1998
).
20.
A.
Tongraar
,
K. R.
Liedl
, and
B. M.
Rode
,
Chem. Phys. Lett.
286
,
56
(
1998
).
21.
A.
Tongraar
and
B. M.
Rode
,
J. Phys. Chem. A
103
,
8524
(
1999
).
22.
G. W.
Marini
,
K. R.
Liedl
, and
B. M.
Rode
,
J. Phys. Chem. A
103
,
11387
(
1999
).
23.
L. M.
Ramaniah
,
M.
Bernasconi
, and
M.
Parrinello
,
J. Chem. Phys.
111
,
1587
(
1999
).
24.
T.
Kerdcharoen
and
B. M.
Rode
,
J. Phys. Chem. A
104
,
7073
(
2000
).
25.
M. I.
Lubin
,
E. J.
Bylaska
, and
J. H.
Weare
,
Chem. Phys. Lett.
322
,
447
(
2000
).
26.
M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford University Press, Oxford, 1987).
27.
N. J.
Elrod
and
R. J.
Saykally
,
Chem. Rev.
94
,
1975
(
1994
).
28.
F. M. Floris and A. Tani, Molecular Dynamics. From Classical to Quantum Methods (Elsevier, Amsterdam, 1999), Vol. 7, p. 363.
29.
R. R.
Pappalardo
and
E. Sánchez
Marcos
,
J. Phys. Chem.
97
,
4500
(
1993
).
30.
R. R.
Pappalardo
,
J. M.
Martı́nez
, and
E. Sánchez
Marcos
,
J. Phys. Chem.
100
,
11748
(
1996
).
31.
X.
Periole
,
D.
Allouche
,
A.
Ramı́rez-Solı́s
,
I.
Ortega-Blake
,
J. P.
Daudey
, and
Y. H.
Sanejouand
,
J. Phys. Chem. B
102
,
8579
(
1998
).
32.
X.
Periole
,
D.
Allouche
,
J. P.
Daudey
, and
Y. H.
Sanejouand
,
J. Phys. Chem. B
101
,
5018
(
1997
).
33.
J. M.
Martı́nez
,
R. R.
Pappalardo
, and
E. Sánchez
Marcos
,
J. Chem. Phys.
109
,
1445
(
1998
).
34.
J. M.
Martı́nez
,
R. R.
Pappalardo
, and
E. Sánchez
Marcos
,
J. Am. Chem. Soc.
121
,
3175
(
1999
).
35.
F. M.
Floris
,
M.
Persico
,
A.
Tani
, and
J.
Tomasi
,
Chem. Phys. Lett.
199
,
518
(
1992
).
36.
F. M.
Floris
,
M.
Persico
,
A.
Tani
, and
J.
Tomasi
,
Chem. Phys. Lett.
227
,
126
(
1994
).
37.
F. M.
Floris
,
M.
Persico
,
A.
Tani
, and
J.
Tomasi
,
Chem. Phys.
195
,
207
(
1995
).
38.
S.
Miertus̆
,
E.
Scrocco
, and
J.
Tomasi
,
Chem. Phys.
117
,
117
(
1981
).
39.
J.
Tomasi
and
M.
Persico
,
Chem. Rev.
94
,
2027
(
1994
).
40.
M.
Odelius
,
C.
Ribhing
, and
J.
Kowaleski
,
J. Chem. Phys.
103
,
1800
(
1995
).
41.
E.
Guardia
,
G.
Sesé
,
J. A.
Padró
, and
S. G.
Kalko
,
J. Solution Chem.
28
,
1113
(
1999
).
42.
J. J. R. Fraústo da Silva and R. J. P. Williams, The Biological Chemistry of the Elements (Oxford University Press, Oxford, 1996).
43.
W. Kaim and B. Schwederski, Bioinorganic Chemistry (Wiley, Chichester, 1994).
44.
F. M.
Floris
,
J. M.
Martı́nez
, and
J.
Tomasi
,
J. Chem. Phys.
116
,
5460
(
2002
), following paper.
45.
C.
Amovilli
and
B.
Menucci
,
J. Phys. Chem. B
101
,
1051
(
1997
).
46.
S.
Petrie
and
L.
Radom
,
Int. J. Mass. Spectrom.
192
,
173
(
1999
).
47.
T.
Kerdcharoen
and
S.
Hannongbua
,
Chem. Phys. Lett.
310
,
333
(
1999
).
48.
M.
Pavlov
,
P. E. M.
Siegbahn
, and
M.
Sandstrom
,
J. Phys. Chem. A
102
,
219
(
1998
).
49.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 99, Development Version Revision A.10+ Gaussian, Inc., Pittsburgh, PA, 1998.
50.
E.
Cancès
,
B.
Mennucci
, and
J.
Tomasi
,
J. Chem. Phys.
107
,
3032
(
1997
).
51.
B.
Mennucci
,
E.
Cancès
, and
J.
Tomasi
,
J. Phys. Chem. B
101
,
10506
(
1997
).
52.
W. S.
Benedict
,
H.
Gailar
, and
E. K.
Pleyer
,
J. Chem. Phys.
24
,
1139
(
1956
).
53.
W. S.
Benedict
and
E. K.
Pleyer
,
Can. J. Chem.
35
,
1235
(
1957
).
54.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
55.
R. C.
Rizzo
and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
121
,
4827
(
1999
).
56.
W. Smith and T. W. Forrester; DL_POLY (2.12 version), CCLRC, Daresbury Laboratory, 1999.
57.
A. K.
Katz
,
J. P.
Glusker
,
S. A.
Beebe
, and
C. W.
Bock
,
J. Am. Chem. Soc.
118
,
5752
(
1996
).
58.
F.
Jalilehvand
,
D.
Spangberg
,
P.
Lindqvist-Reis
,
K.
Hermansson
,
I.
Persson
, and
M.
Sandstrom
,
J. Am. Chem. Soc.
123
,
431
(
2001
).
59.
J.
Gao
and
T. F.
George
,
J. Phys. Chem.
97
,
9241
(
1993
).
60.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
61.
I.
Ortega-Blake
,
J. C.
Barthelat
,
E.
Costes-Puech
,
E.
Oliveros
, and
J.-P.
Daudey
,
J. Chem. Phys.
76
,
4130
(
1982
).
62.
See EPAPS Document No. E-JCPSA6-116-305213 for atomic coordinate files of structures in Figs. 5 and 6.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.