The density matrix variational theory (DMVT) algorithm developed previously [J. Chem. Phys. 114, 8282 (2001)] was utilized for calculations of the potential energy surfaces of molecules, H4,H2O,NH3,BH3, CO, N2,C2, and Be2. The DMVT(PQG), using the P,Q, and G conditions as subsidiary condition, reproduced the full-CI curves very accurately even up to the dissociation limit. The method described well the quasidegenerate states and the strongly correlated systems. On the other hand, the DMVT(PQ) was not satisfactory especially in the dissociation limit and its potential curves were always repulsive. The size consistency of the method was discussed and the G condition was found to be essential for the correct behavior of the potential curve. Further, we also examined the Weinhold–Wilson inequalities for the resultant 2-RDM of DMVT(PQG) calculations. Two linear inequalities were violated when the results were less accurate, suggesting that this inequality may provide a useful N-representability condition for the DMVT.

1.
K.
Husimi
,
Proc. Phys. Math. Soc. Jpn.
22
,
264
(
1940
).
2.
P.-O.
Löwdin
,
Phys. Rev.
99
,
1474
(
1955
).
3.
H.
Nakatsuji
,
Phys. Rev. A
14
,
41
(
1976
).
4.
C.
Valdemoro
,
Phys. Rev. A
45
,
4462
(
1992
);
F.
Colmenero
,
C.
Pérez del Valle
, and
C.
Valdemoro
,
Phys. Rev. A
47
,
971
(
1993
);
F.
Colmenero
and
C.
Valdemoro
,
Phys. Rev. A
47
,
979
(
1993
).
5.
H.
Nakatsuji
and
K.
Yasuda
,
Phys. Rev. Lett.
76
,
1039
(
1996
);
K.
Yasuda
and
H.
Nakatsuji
,
Phys. Rev. A
56
,
2648
(
1997
).
6.
D. A.
Mazziotti
,
Phys. Rev. A
57
,
4219
(
1998
);
D. A.
Mazziotti
,
Chem. Phys. Lett.
289
,
419
(
1998
).
7.
H. Nakatsuji, in Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer Academic, New York, 2000).
8.
A. J.
Coleman
,
Rev. Mod. Phys.
35
,
668
(
1963
).
9.
C.
Garrod
, and
J. K.
Percus
,
J. Math. Phys.
5
,
1756
(
1964
).
10.
L. J.
Kijewski
and
J. K.
Percus
,
Phys. Rev. A
2
,
1659
(
1970
);
L. J.
Kijewski
,
Phys. Rev. A
6
,
1659
(
1972
);
L. J.
Kijewski
,
Phys. Rev. A
9
,
2263
(
1974
).
11.
C.
Garrod
,
M. V.
Mihailović
, and
M.
Rosina
,
J. Math. Phys.
16
,
868
(
1975
).
12.
C.
Garrod
and
M. A.
Fusco
,
Int. J. Quantum Chem.
10
,
495
(
1976
).
13.
R. M.
Erdahl
,
Rep. Math. Phys.
15
,
147
(
1979
).
14.
R. M.
Erdahl
, and
B.
Jin
,
J. Mol. Struct.: THEOCHEM
527
,
207
(
2000
);
R. M. Erdahl and B. Jin, in Many-Electron Densities and Reduced Density Matrices, edited by J. Cioslowski (Kluwer Academic, New York, 2000).
15.
M.
Nakata
,
H.
Nakatsuji
,
M.
Ehara
,
M.
Fukuda
,
K.
Nakata
, and
K.
Fujisawa
,
J. Chem. Phys.
114
,
8282
(
2001
).
16.
Y. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Method in Convex Programming: Theory and Applications (SIAM, Philadelphia, 1993).
17.
L.
Vandenberghe
and
S.
Boyd
,
SIAM Rev.
38
,
49
(
1996
).
18.
M. Kojima, Semidefinite Programming and Interior-Point Methods, http://www.is.titech.ac.jp/ ̃kojima/wabun.html, 1996 (in Japanese).
19.
K. Fujisawa, M. Kojima, and K. Nakata, SDPA (SemiDefinite Programming Algorithm) User’s Manual Version 5.00, August 1999. http://is-mj.archi.kyoto-u.ac.jp/ ̃fujisawa/software.html
20.
D. A.
Mazziotti
and
R. M.
Erdahl
,
Phys. Rev. A
63
,
042113
(
2001
).
21.
C.
Valdemoro
,
L. M.
Tel
, and
E.
Perez-Romero
,
Phys. Rev. A
61
,
032507
(
2000
).
22.
H.
Nakatsuji
,
J. Chem. Phys.
113
,
2949
(
2000
).
23.
H.
Nakatsuji
and
E. R.
Davidson
,
J. Chem. Phys.
115
,
2000
(
2001
).
24.
H.
Nakatsuji
,
J. Chem. Phys.
115
,
2465
(
2001
).
25.
H.
Nakatsuji
J. Chem. Phys.
116
,
1811
(
2002
).
26.
M.
Ehara
,
M.
Nakata
,
H.
Kou
,
K.
Yasuda
, and
H.
Nakatsuji
,
Chem. Phys. Lett.
305
,
483
(
1999
).
27.
F.
Weinhold
and
E. B.
Wilson
, Jr.
,
J. Chem. Phys.
47
,
2298
(
1967
).
28.
E. R.
Davidson
,
J. Math. Phys.
10
,
725
(
1969
).
29.
W. B.
McRae
and
E. R.
Davidson
,
J. Math. Phys.
13
,
1527
(
1972
).
30.
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, Harcourt Brace, New York, 1990).
31.
T. V.
Voorhis
and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
8873
(
2001
).
32.
J.
Paldus
,
P.
Piecuch
,
L.
Pylypow
, and
B.
Jezirovski
,
Phys. Rev. A
47
,
2738
(
1993
).
33.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1970
);
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
);
T. H. Dunning, J. and P. J. Hay, In Method of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977), Vol. 2.
34.
Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 4/22/01, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352. http://www.emsl.pnl.gov:2080/forms/basisform.html
35.
W. J.
Hehre
,
R. F.
Stewart
, and
J. A.
Pople
,
J. Chem. Phys.
51
,
2657
(
1969
).
36.
J. H. Callomon, E. Horita, K. Kuchitsu, W. J. Lafferty, A. G. Maki, and C. S. Pote, Landolt–Börnstein (Springer-Verlag, Berlin, 1976).
37.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV, Electronic Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
38.
J. L.
Dunhum
,
Phys. Rev.
41
,
713
,
721
(
1932
);
H. M.
Hulburt
and
J. O.
Hirschfelder
,
J. Chem. Phys.
9
,
61
(
1941
).
This content is only available via PDF.
You do not currently have access to this content.