A hierarchical family of analytical Born–Oppenheimer potential energy surfaces has been developed for the H+H2 system. Ab initio calculations of near full configuration interaction (FCI) quality (converged to within ≈1 μEh) were performed for a set of 4067 configurations with the aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets. The complete basis set (CBS) limit energies were obtained using a highly accurate many-body basis set extrapolation scheme. Surfaces were fitted for the estimated CBS limit, as well as for the aug-cc-pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ basis sets using a robust new functional form. The mean unsigned fitting error for the CBS surface is a mere 0.0023 kcal/mol, and deviations for data not included in the fitting process are of similarly small magnitudes. Highly accurate calculations of the saddle point and van der Waals minimum configurations were performed using basis sets as large as aug-mcc-pV7Z, and these data show excellent agreement with the results of the extrapolated potential surface. The remaining errors from fitting, correlation treatment, and basis set incompleteness for the new CBS-limit surface are lower by over an order of magnitude compared to any prior analytic surface, and are all now significantly smaller than non-Born–Oppenheimer effects. We expect that this new family of potential surfaces will prove useful in studies elucidating the sensitivity of dynamical quantities to the quality of the potential surface.

1.
B.
Liu
,
J. Chem. Phys.
58
,
1925
(
1973
).
2.
P.
Siegbahn
and
B.
Liu
,
J. Chem. Phys.
68
,
2457
(
1978
).
3.
D. G.
Truhlar
and
C. J.
Horowitz
,
J. Chem. Phys.
68
,
2466
(
1978
);
D. G.
Truhlar
and
C. J.
Horowitz
,
J. Chem. Phys.
71
,
1514
(
1979
).
4.
A. J. C.
Varandas
,
F. B.
Brown
,
C. A.
Mead
,
D. G.
Truhlar
, and
N. C.
Blais
,
J. Chem. Phys.
86
,
6258
(
1987
).
5.
A. I.
Boothroyd
,
W. J.
Keogh
,
P. G.
Martin
, and
M. R.
Peterson
,
J. Chem. Phys.
95
,
4343
(
1991
).
6.
A. I.
Boothroyd
,
W. J.
Keogh
,
P. G.
Martin
, and
M. R.
Peterson
,
J. Chem. Phys.
104
,
7139
(
1996
).
7.
M. R. A.
Blomberg
and
B.
Liu
,
J. Chem. Phys.
82
,
1050
(
1985
).
8.
C. W.
Bauschlicher
, Jr.
,
S. R.
Langhoff
, and
H.
Partridge
,
Chem. Phys. Lett.
170
,
345
(
1990
).
9.
H.
Partridge
,
C. W.
Bauschlicher
, Jr.
, and
J. R.
Stallcop
,
J. Chem. Phys.
99
,
5951
(
1993
).
10.
Y.-S. M.
Wu
,
A.
Kuppermann
, and
J. B.
Anderson
,
Phys. Chem. Chem. Phys.
1
,
929
(
1999
).
11.
D. L.
Diedrich
and
J. B.
Anderson
,
Science
258
,
786
(
1992
).
12.
D. L.
Diedrich
and
J. B.
Anderson
,
J. Chem. Phys.
100
,
8089
(
1994
).
13.
S. L.
Mielke
,
B. C.
Garrett
, and
K. A.
Peterson
,
J. Chem. Phys.
111
,
3806
(
1999
).
14.
M.
Mladenovic
,
M.
Zhao
,
D. G.
Truhlar
,
D. W.
Schwenke
,
Y.
Sun
, and
D. J.
Kouri
,
J. Phys. Chem.
92
,
7035
(
1988
).
15.
J. Z. H.
Zhang
and
W. H.
Miller
,
Chem. Phys. Lett.
153
,
465
(
1988
).
16.
J. Z. H.
Zhang
and
W. H.
Miller
,
Chem. Phys. Lett.
159
,
130
(
1989
).
17.
J. Z. H.
Zhang
and
W. H.
Miller
,
J. Chem. Phys.
91
,
1528
(
1989
).
18.
J. M.
Launay
and
M.
Le Dourneuf
,
Chem. Phys. Lett.
163
,
178
(
1989
).
19.
M.
Zhao
,
D. G.
Truhlar
,
D. W.
Schwenke
, and
D. J.
Kouri
,
J. Phys. Chem.
94
,
7074
(
1990
).
20.
Y.-S. M.
Wu
,
A.
Kuppermann
, and
B.
Lepetit
,
Chem. Phys. Lett.
186
,
319
(
1991
).
21.
M.
D’Mello
,
D. E.
Manolopoulos
, and
R. E.
Wyatt
,
J. Chem. Phys.
94
,
5985
(
1991
).
22.
S. L.
Mielke
,
R. S.
Friedman
,
D. G.
Truhlar
, and
D. W.
Schwenke
,
Chem. Phys. Lett.
188
,
359
(
1992
).
23.
D.
Neuhauser
,
R. S.
Judson
,
D. J.
Kouri
,
D. E.
Adelman
,
N. E.
Shafer
,
D. A. V.
Kliner
, and
R. N.
Zare
,
Science
257
,
519
(
1992
).
24.
Y.-S. M.
Wu
and
A.
Kuppermann
,
Chem. Phys. Lett.
201
,
178
(
1993
).
25.
A.
Kuppermann
and
Y.-S. M.
Wu
,
Chem. Phys. Lett.
205
,
577
(
1993
);
A.
Kuppermann
and
Y.-S. M.
Wu
,
Chem. Phys. Lett.
213
,
636E
(
1993
).
26.
S. L.
Mielke
,
D. G.
Truhlar
, and
D. W.
Schwenke
,
J. Phys. Chem.
98
,
1053
(
1994
).
27.
F. J.
Aoiz
,
L.
Banares
,
M. J.
D’Mello
,
V. J.
Herrero
,
V. Saez
Rabanos
,
L.
Schnieder
, and
R. E.
Wyatt
,
J. Chem. Phys.
101
,
5781
(
1994
).
28.
S. L.
Mielke
,
G. C.
Lynch
,
D. G.
Truhlar
, and
D. W.
Schwenke
,
J. Phys. Chem.
98
,
8000
(
1994
).
29.
M. J.
D’Mello
,
D. E.
Manolopoulos
, and
R. E.
Wyatt
,
Science
263
,
102
(
1994
).
30.
Y.
Sun
and
A.
Dalgarno
,
Astrophys. J.
427
,
1053
(
1994
).
31.
Y.-S. M.
Wu
and
A.
Kuppermann
,
Chem. Phys. Lett.
235
,
105
(
1995
).
32.
A.
Kuppermann
and
Y.-S. M.
Wu
,
Chem. Phys. Lett.
241
,
229
(
1995
);
A.
Kuppermann
and
Y.-S. M.
Wu
,
Chem. Phys. Lett.
243
,
586E
(
1995
).
33.
L.
Schnieder
,
K.
Seekamp-Rahn
,
J.
Borkowski
et al.
Science
269
,
207
(
1995
).
34.
L.
Banares
and
M. J.
D’Mello
,
Chem. Phys. Lett.
277
,
465
(
1997
).
35.
L.
Banares
,
F. J.
Aoiz
,
V. J.
Herrero
,
M. J.
D’Mello
,
B.
Niederjohann
,
K.
Seekamp-Rahn
,
E.
Wrede
, and
L.
Schnieder
,
J. Chem. Phys.
108
,
6160
(
1998
).
36.
M. P.
de Miranda
,
D. C.
Clary
,
J. F.
Castillo
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
108
,
3142
(
1998
).
37.
M. P.
de Miranda
,
F. J.
Aoiz
,
L.
Banares
, and
V. Saez
Rabanos
,
J. Chem. Phys.
111
,
5368
(
1999
).
38.
E.
Wrede
,
L.
Schnieder
,
K. H.
Welge
,
F. J.
Aoiz
,
L.
Banares
,
J. F.
Castillo
,
B.
Martinez-Haya
, and
V. J.
Herrero
,
J. Chem. Phys.
110
,
9971
(
1999
).
39.
B. K.
Kendrick
,
J. Chem. Phys.
112
,
5679
(
2000
);
B. K.
Kendrick
,
J. Chem. Phys.
114
,
4335
(
2001
).
40.
S.
Mahapatra
,
H.
Koppel
, and
L. S.
Cederbaum
,
J. Phys. Chem. A
105
,
2321
(
2001
).
41.
F. J.
Aoiz
,
L.
Banares
, and
J. F.
Castillo
,
J. Chem. Phys.
114
,
8237
(
2001
).
42.
B. K.
Kendrick
,
J. Chem. Phys.
114
,
8796
(
2001
).
43.
A. A.
Westenberg
and
N.
De Haas
,
J. Chem. Phys.
47
,
1393
(
1967
).
44.
B. A.
Ridley
,
W. R.
Schultz
, and
D. J.
Le Roy
,
J. Chem. Phys.
44
,
3344
(
1966
).
45.
D. N.
Mitchell
and
D. J.
Le Roy
,
J. Chem. Phys.
58
,
3449
(
1973
).
46.
J. V.
Michael
and
J. R.
Fisher
,
J. Phys. Chem.
94
,
3318
(
1990
).
47.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
48.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
49.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
50.
The three configurations specified as R1=3.44 a0,θ=90°, and R2=0.9, 1.25, and 1.55 a0 actually were calculated with R1=3.40 a0; these three configurations were excluded from the BKMP2 fit but may have been used uncorrected in other surfaces, which would have resulted in errors of about 0.5 mEh.
51.
R.
Gengenbach
,
Ch.
Hahn
, and
J. P.
Toennies
,
J. Chem. Phys.
62
,
3620
(
1975
).
52.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
43
,
2429
(
1965
).
53.
F. B.
Brown
and
D. G.
Truhlar
,
Chem. Phys. Lett.
117
,
307
(
1985
).
54.
B.
Liu
,
J. Chem. Phys.
80
,
581
(
1984
).
55.
D. M.
Ceperley
and
B. J.
Alder
,
J. Chem. Phys.
81
,
5833
(
1984
).
56.
R. N.
Barnett
,
P. J.
Reynolds
, and
W. A.
Lester
, Jr.
,
J. Chem. Phys.
82
,
2700
(
1985
).
57.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
(
1974
).
58.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
39
,
217
(
1975
).
59.
A. I.
Boothroyd
,
J. E.
Dove
,
W. J.
Keogh
,
P. G.
Martin
, and
M. R.
Peterson
,
J. Chem. Phys.
95
,
4331
(
1991
).
60.
E. R.
Davidson
and
D. W.
Silver
,
Chem. Phys. Lett.
52
,
403
(
1977
).
61.
E. R. Davidson, in The World of Quantum Chemistry, edited by R. Daudel and B. Pullman (Reidel, Dordrecht, 1974).
62.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
63.
F.
London
,
Z. Elektrochem. Angew. Phys. Chem.
35
,
552
(
1929
).
64.
MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles with contributions from J. Almlöf, R. D. Amos, A. Bernhardsson et al.
65.
A. J. C.
Varandas
and
J. N.
Murrell
,
Faraday Discuss. Chem. Soc.
62
,
92
(
1977
).
66.
J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley, and A. J. C. Varandas, Molecular Potential Energy Functions (Wiley, London, 1984).
67.
W.
Kolos
,
K.
Szalewicz
, and
H. J.
Monkhorst
,
J. Chem. Phys.
84
,
3278
(
1986
).
68.
A.
Aguado
and
M.
Paniagua
,
J. Chem. Phys.
96
,
1265
(
1992
).
69.
G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed. (The Johns Hopkins University Press, Baltimore, 1989).
70.
B. R.
Johnson
,
J. Chem. Phys.
74
,
754
(
1981
).
71.
D. W.
Schwenke
,
J. Chem. Phys.
89
,
2076
(
1988
).
72.
D. W.
Schwenke
,
Theor. Chim. Acta
74
,
381
(
1988
).
73.
W.
Kolos
and
J.
Rychlewski
,
J. Mol. Spectrosc.
143
,
237
(
1990
).
74.
W. J.
Deal
and
R. H.
Young
,
Mol. Phys.
19
,
427
(
1970
).
75.
T. C.
Thompson
and
C. A.
Mead
,
J. Chem. Phys.
82
,
2408
(
1985
).
76.
J. Komasa, W. Cencek, and J. Rychlewski, in Computational Methods in Science and Technology, Vol. 2, edited by J. Rychlewski, J. Weglarz, and K. W. Wojciechowski (Scientific Publishers OWN, Poznan, 1996), p. 87.
77.
R. N.
Porter
,
R. M.
Stevens
, and
M.
Karplus
,
J. Chem. Phys.
49
,
5163
(
1968
).
78.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
41
,
3663
(
1964
).
79.
B. C.
Garrett
and
D. G.
Truhlar
,
J. Chem. Phys.
82
,
4543
(
1985
).
80.
S.
Garashchuk
,
J. C.
Light
, and
V. A.
Rassolov
,
Chem. Phys. Lett.
333
,
459
(
2001
).
81.
D. W.
Schwenke
,
J. Phys. Chem. A
105
,
2352
(
2001
).
82.
W.
Kolos
and
J.
Rychlewski
,
J. Chem. Phys.
98
,
3960
(
1993
).
83.
See EPAPS Document No. E-JCPSA6-116-305206 for 50 pages of supplementary data.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.