The thermodynamic and structural properties of Yukawa hard chains are considered in this work. We specifically examined the influence of the Yukawa potential range parameter λ on the thermodynamic properties, inter- and intrachain correlation functions of the chain fluid. The compressibility factor or pressure of Yukawa chain fluids was calculated via a first-order perturbation theory using hard-sphere chain fluid as a reference. Monte Carlo simulations were performed to calculate the thermodynamic properties and inter- and intrachain correlation functions of the fluid for λ=1.8 and 3.0. Simulation results for the compressibility were compared with calculations from the first-order perturbation theory and the Statistical Associating Fluid Theory-Variable Range (SAFT-VR) model. We found that both theories represent the simulated data very well. In particular, the SAFT-VR equation provides an excellent estimate of the properties of Yukawa hard chains over wide ranges of temperature and density. Simulated data for interchain and intrachain correlation functions reveal that the local structure of the Yukawa hard chains is strongly effected by the range parameter of the potential.

1.
J. S.
Rowlinson
,
Physica A
156
,
15
(
1989
).
2.
K. P.
Shukla
and
R.
Rajagopalan
,
J. Chem. Phys.
101
,
11077
(
1994
).
3.
D.
Pini
,
G.
Stell
, and
N. B.
Wilding
,
Mol. Phys.
95
,
483
(
1998
).
4.
C.
Caccamo
,
G.
Pellicane
,
D.
Costa
,
D.
Pini
, and
G.
Stell
,
Phys. Rev. E
60
,
5533
(
1999
).
5.
K.
Shukla
,
J. Chem. Phys.
112
,
10358
(
2000
).
6.
E.
Waisman
,
Mol. Phys.
25
,
45
(
1973
).
7.
D.
Henderson
,
G.
Stell
, and
E.
Waisman
,
J. Chem. Phys.
62
,
4247
(
1975
).
8.
J. S.
Høye
and
G.
Stell
,
Mol. Phys.
32
,
195
(
1976
).
9.
D.
Henderson
,
E.
Waisman
,
J. L.
Lebowitz
, and
L.
Blum
,
Mol. Phys.
35
,
241
(
1978
).
10.
P. T.
Cummings
and
G.
Stell
,
J. Chem. Phys.
78
,
1917
(
1983
).
11.
D. M.
Duh
and
L.
Mier-Y-Terán
,
Mol. Phys.
90
,
373
(
1997
).
12.
H. S.
Gulati
,
J. M.
Wichut
, and
C. K.
Hall
,
J. Chem. Phys.
104
,
5220
(
1996
).
13.
G.
Stell
,
C. T.
Lin
, and
Y. V.
Kalyuzhnyi
,
J. Chem. Phys.
110
,
5444
(
1999
);
G.
Stell
,
C. T.
Lin
, and
Y. V.
Kalyuzhnyi
,
J. Chem. Phys.
110
,
5458
(
1999
);
C. T.
Lin
,
G.
Stell
, and
Y. V.
Kalyuzhnyi
,
J. Chem. Phys.
112
,
3071
(
2000
).
14.
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1057
(
1988
).
15.
Y. C.
Chiew
,
Mol. Phys.
70
,
129
(
1990
).
16.
R.
O’Lenick
and
Y. C.
Chiew
,
Mol. Phys.
85
,
257
(
1995
).
17.
X. J.
Li
and
Y. C.
Chiew
,
J. Chem. Phys.
101
,
2522
(
1994
).
18.
J. K.
Johnson
,
J. A.
Zolleneg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
19.
N.
von Solms
,
R.
O’Lenick
, and
Y. C.
Chiew
,
Mol. Phys.
96
,
15
(
1999
);
N.
von Solms
and
Y. C.
Chiew
,
Mol. Phys.
97
,
997
(
1999
).
20.
A.
Yethiraj
and
C. K.
Hall
,
J. Chem. Phys.
95
,
8494
(
1991
).
21.
M.
Banaszak
,
Y. C.
Chiew
, and
M.
Radosz
,
Phys. Rev. E
48
,
3760
(
1993
).
22.
Y. Q.
Zhou
,
C. K.
Hall
, and
G.
Stell
,
Mol. Phys.
86
,
1485
(
1995
).
23.
A.
Gil-Villeges
,
A.
Galindo
,
P. J.
Whitehead
,
S. J.
Mills
,
G.
Jackson
, and
A. N.
Burgess
,
J. Chem. Phys.
106
,
4168
(
1997
).
24.
Y. C.
Chiew
,
Mol. Phys.
73
,
359
(
1991
);
Y. C.
Chiew
,
J. Chem. Phys.
93
,
5067
(
1990
).
25.
J.
Gross
and
G.
Sadowski
,
Fluid Phase Equilibria
168
,
183
(
2000
);
I.
Nezbeda
,
Mol. Phys.
33
,
1287
(
1977
).
26.
J.
Chang
and
S. I.
Sandler
,
Chem. Eng. Sci.
49
,
2777
(
1994
).
27.
F. W.
Tavares
,
J.
Chang
, and
S. I.
Sandler
,
Mol. Phys.
86
,
1451
(
1995
).
28.
A.
Yethiraj
,
C. K.
Hall
, and
K. G.
Honnell
,
J. Chem. Phys.
93
,
4453
(
1990
);
R.
Dickman
and
C. K.
Hall
,
J. Chem. Phys.
89
,
3168
(
1988
).
29.
J.
Chang
and
S. I.
Sandler
,
J. Chem. Phys.
102
,
437
(
1995
).
30.
P.
Attard
,
J. Chem. Phys.
102
,
5411
(
1995
).
31.
M. P.
Taylor
and
J. E. G.
Lipson
,
J. Chem. Phys.
102
,
2118
(
1995
).
32.
B. C.
Eu
and
H. H.
Gan
,
J. Chem. Phys.
99
,
4084
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.