Using the high-resolution pulsed field ionization-photoelectron (PFI-PE) and PFI-PE-photoion coincidence (PFI-PEPICO) techniques, we have examined the formation of methyl cation (CH3+) from the dissociation of energy-selected CH3X+ (X=Br and I) near their dissociation thresholds. The breakdown diagrams for CH3X thus obtained yield values of 12.834±0.002 eV and 12.269±0.003 eV for the 0 K dissociative threshold or appearance energy (AE) for CH3+ from CH3Br and CH3I, respectively. Similar to the observation in PFI-PE studies of CH4,C2H2, and NH3, the PFI-PE spectrum for CH3Br exhibits a step at the 0 K AE for CH3+, indicating that the dissociation of excited CH3Br in high-n (⩾100) Rydberg states at energies slightly above the dissociation threshold occurs in a time scale of ⩽10−7s. The observed step is a confirmation of the 0 K AE(CH3+) from CH3Br determined in the PFI-PEPICO study. The adiabatic ionization energies (IEs) for the CH3Br+(X̃ 2E3/2,1/2) spin–orbit states were determined by PFI-PE measurements to be 10.5427±0.0010 and 10.8615±0.0010 eV, respectively, yielding the spin–orbit coupling constant to be 2571±4 cm−1. The AE(CH3+) values from CH3Br and CH3I and the IE[CH3Br+(X̃ 2E3/2)] value obtained here, when combined with the known IE of CH3 (9.8380±0.0004 eV) and IE[CH3I+(X̃ 2E3/2)] (9.5381±0.0001 eV), have allowed accurate determination of the 0 K bond dissociation energies for CH3–Br (2.996±0.002 eV), CH3+–Br (2.291±0.002 eV), CH3–I (2.431±0.003 eV), and CH3+–I (2.731±0.003 eV). Using the AE(CH3+) from CH3Br and CH3I, together with the known 0 K heats of formation fH00) for Br (117.93±0.13 kJ/mol), I (107.16±0.04 kJ/mol), and CH3+ (1099.05±0.33 kJ/mol), we have obtained more precise ΔfH00 values for CH3Br (−21.30±0.42 kJ/mol) and CH3I (22.43±0.50 kJ/mol). This experiment demonstrated that highly reliable ΔfH00 values for a range of molecules with error limits comparable to those for some of the most precisely measured values, such as ΔfH00(CH4), can be obtained by PFI-PE and PFI-PEPICO measurements.

1.
H. M. Rosenstock, M. K. Draxl, B. W. Steiner, and J. T. Herron, J. Phys. Ref. Data Suppl. 6 (Suppl. 1) (1977).
2.
S. G.
Lias
,
J. E.
Bartmess
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data Suppl.
17
,
1
(
1988
).
3.
The NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/
4.
J. Berkowitz, Photoabsorption, Photoionization, and Photoelectron Spectroscopy (Academic, New York, 1979).
5.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
);
M. N.
Glukhovtsev
,
A.
Pross
,
M. P.
McGrath
, and
L.
Radom
,
J. Chem. Phys.
103
,
1878
(
1995
).
6.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
7.
K.
Müller-Dethlefs
,
M.
Sander
, and
E. W.
Schlag
,
Z. Naturforsch. Teil A
39A
,
1089
(
1984
).
8.
E. W. Schlag, ZEKE Spectroscopy (Cambridge University Press, Cambridge, 1998).
9.
High Resolution Laser Photoionization and Photoelectron Studies, Wiley Series in Ion Chemistry and Physics, edited by I. Powis, T. Baer, and C. Y. Ng (Wiley, Chichester, 1995).
10.
P. M. Johnson, in Photoionization and Photodetachment, edited by C. Y. Ng (World Scientific, Singapore, 2000), Adv. Ser Phys. Chem., Vol. 10A, pp. 296–346.
11.
D. D.
Martin
and
J. W.
Hepburn
,
Phys. Rev. Lett.
79
,
3154
(
1997
);
D. D.
Martin
and
J. W.
Hepburn
,
J. Chem. Phys.
109
,
8139
(
1998
).
12.
C. Y. Ng, in Photoionization, and Photodetachment, edited by C. Y. Ng (World Scientific, Singapore, 2000), Adv. Ser Phys. Chem. 10A, Chap. 9, pp. 394–538.
13.
G. K.
Jarvis
,
Y.
Song
, and
C. Y.
Ng
,
Rev. Sci. Instrum.
70
,
2615
(
1999
).
14.
G. K.
Jarvis
,
K.-M.
Weitzel
,
M.
Malow
,
T.
Baer
,
Y.
Song
, and
C. Y.
Ng
,
Rev. Sci. Instrum.
70
,
3892
(
1999
).
15.
K.-M.
Weitzel
,
G.
Jarvis
,
M.
Malow
,
T.
Baer
,
Y.
Song
, and
C. Y.
Ng
,
Phys. Rev. Lett.
86
,
3526
(
2001
).
16.
Y.
Song
,
X.-M.
Qian
,
K.-C.
Lau
,
C. Y.
Ng
,
J.
Liu
, and
W.
Chen
,
J. Chem. Phys.
115
,
2582
(
2001
).
17.
Karl-Michael
Weitzel
,
Marcus
Malow
,
G. K.
Jarvis
,
Tomas
Baer
,
Y.
Song
, and
C. Y.
,
J. Chem. Phys.
111
,
8267
(
1999
).
18.
G. K.
Jarvis
,
Karl-Michael
Weitzel
,
Marcus
Malow
,
Tomas
Baer
,
Y.
Song
, and
C. Y.
Ng
,
Phys. Chem. Chem. Phys.
1
,
5259
(
1999
).
19.
T.
Baer
,
Y.
Song
,
C. Y.
Ng
,
J.
Liu
, and
W.
Chen
,
Faraday Discuss.
115
,
137
(
2000
).
20.
T.
Baer
,
Y.
Song
,
C. Y.
Ng
,
W.
Chen
, and
J.
Liu
,
J. Phys. Chem.
104
,
1959
(
2000
).
21.
JANAF Thermochemical Tables (Dow Chemical, Midland, MI, 1977);
J. Phys. Chem. Ref. Data
11
,
695
(
1982
).
22.
V. P. Glushko, L. V. Gurvich, G. A. Bergman, I. V. Veits, V. A. Medvedev, G. A. Khachkunuzov, and V. S. Yungman, Termodinamicheski Svoistva Individual’nikh Veshchestv (Nauka, Moscow, 1978), Vol. I, Books 1 and 2.
23.
J. A.
Blush
,
P.
Chen
,
R. T.
Wiedmann
, and
M. G.
White
,
J. Chem. Phys.
98
,
3557
(
1993
).
24.
P.
Heimann
,
M.
Koike
,
C.-W.
Hsu
,
D.
Blank
,
X. M.
Yang
,
A.
Suits
,
Y. T.
Lee
,
M.
Evans
,
C. Y.
Ng
,
C.
Flaim
, and
H. A.
Padmore
,
Rev. Sci. Instrum.
68
,
1945
(
1997
).
25.
C.-W.
Hsu
,
M.
Evans
,
P. A.
Heimann
, and
C. Y.
Ng
,
Rev. Sci. Instrum.
68
,
1694
(
1997
).
26.
C.-W.
Hsu
,
M.
Evans
,
S.
Stimson
,
C. Y.
Ng
, and
P.
Heimann
,
Chem. Phys.
231
,
121
(
1998
).
27.
G. K.
Jarvis
,
M.
Evans
,
C. Y.
Ng
, and
K.
Mitsuke
,
J. Chem. Phys.
111
,
3058
(
1999
).
28.
S.
Stimson
,
Y.-J.
Chen
,
M.
Evans
,
C.-L.
Liao
,
C. Y.
Ng
,
C.-W.
Hsu
, and
P.
Heimann
,
Chem. Phys. Lett.
289
,
507
(
1998
).
29.
K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, Handbook of He I Photoelectron Spectra of Fundamental Organic Compounds (Japan Scientific Society, Tokyo, 1981).
30.
G. Herzberg, Molecular Spectra and Molecular Structure, Vol. III, Electronic spectra and Electronic structure of Polyatmoic Molecules (Van Nostrand, New York, 1966).
31.
T.
Beyer
and
D. F.
Swinehart
,
Assoc. Comput. Mach., Commun.
16
,
379
(
1973
).
32.
B. P.
Tsai
,
T.
Baer
,
A. S.
Werner
, and
S. F.
Lin
,
J. Phys. Chem.
79
,
570
(
1975
).
33.
P.
Hochmann
,
P. H.
Templet
,
H.-T.
Wang
, and
S. P.
McGlynn
,
J. Chem. Phys.
62
,
2588
(
1975
);
W. C.
Price
,
J. Chem. Phys.
4
,
539
(
1936
).
34.
A.
Strobel
,
A.
Lochschmidt
,
I.
Fischer
,
G.
Niedner-Schatteburg
, and
V. E.
Bondybey
,
J. Chem. Phys.
99
,
733
(
1993
);
A.
Strobel
,
I.
Fischer
, and
A.
Lochschmidt
,
J. Phys. Chem.
98
,
2024
(
1994
).
35.
M. A.
Baig
,
J. P.
Connerade
,
J.
Dagata
, and
S. P.
McGlynn
,
J. Phys. B
14
,
L25
(
1981
).
36.
K.
Walter
,
R.
Weinkauf
,
U.
Boesl
, and
E. W.
Schlag
,
J. Chem. Phys.
89
,
1914
(
1988
).
37.
D. M.
Mintz
and
T.
Baer
,
J. Chem. Phys.
65
,
2407
(
1976
).
38.
M.
Krauss
,
J. A.
Walker
, and
V. H.
Dibeler
,
J. Res. Natl. Bur. Stand., Sect. A
72A
,
281
(
1968
);
J. C.
Traeger
and
R. G.
McLoughlin
,
J. Am. Chem. Soc.
103
,
3647
(
1981
).
39.
J.
Berkowitz
,
G. B.
Ellison
, and
D.
Gutman
,
J. Phys. Chem.
98
,
2744
(
1994
).
40.
K. C.
Ferguson
,
E. N.
Okafo
, and
E.
Whittle
,
J. Chem. Soc., Faraday Trans. 1
69
,
295
(
1973
).
41.
G. P.
Adams
,
A. S.
Carson
, and
P. G.
Laye
,
Trans. Faraday Soc.
62
,
1324
(
1965
);
P.
Fowell
,
J. R.
Lacher
, and
J. D.
Park
,
Trans. Faraday Soc.
61
,
1324
(
1965
).
42.
A. J. C. Nickolson, in Recent Developments in Mass Spectrometroscopy, edited by K. Ogata and T. Hayakawa (University Park, Baltimore, 1970), p. 745.
43.
D. M.
Golden
,
R.
Walsh
, and
S. W.
Benson
,
J. Am. Chem. Soc.
87
,
4053
(
1965
).
44.
J. D. Cox and G. Pilcher, Thermochemistry of Organic and Organometallic Compounds (Academic, New York, 1965).
45.
C. A.
Goy
and
H. O.
Pritchard
,
J. Phys. Chem.
69
,
3040
(
1965
).
46.
L. A.
Curtiss
,
P. C.
Redfern
,
V.
Rassolov
,
G.
Kedziora
, and
J. A.
Pople
,
J. Chem. Phys.
114
,
9287
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.