We propose a new long-range correction scheme that combines generalized-gradient-approximation (GGA) exchange functionals in density-functional theory (DFT) with the ab initio Hartree–Fock exchange integral by using the standard error function. To develop this scheme, we suggest a new technique that constructs an approximate first-order density matrix that corresponds to a GGA exchange functional. The calculated results of the long-range correction scheme are found to support a previous argument that the lack of the long-range interactions in conventional exchange functionals may be responsible for the underestimation of 4s−3d interconfigurational energies of the first-row transition metals and for the overestimation of the longitudinal polarizabilities of π-conjugated polyenes in DFT calculations.

1.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
2.
R. M. Dreizler and E. K. U. Gross, Density-Functional Theory: An Approach to the Quantum Many-Body Problem (Springer-Verlag, Berlin, 1990).
3.
T.
Tsuneda
,
M.
Kamiya
,
N.
Morinaga
, and
K.
Hirao
,
J. Chem. Phys.
114
,
6505
(
2001
).
4.
Y.
Zhang
and
W.
Yang
,
J. Chem. Phys.
109
,
2604
(
1998
).
5.
S.
Yanagisawa
,
T.
Tsuneda
, and
K.
Hirao
,
J. Chem. Phys.
112
,
545
(
2000
).
6.
S. Yanagisawa, T. Tsuneda, and K. Hirao, J. Comput. Chem. (in press).
7.
B.
Champagne
,
E. A.
Perpete
,
S. J. A.
van Gisbergen
,
E.-J.
Baerends
,
J. G.
Snijders
,
C.
Soubra-Ghaoui
,
K. A.
Robins
, and
B.
Kirtman
,
J. Chem. Phys.
109
,
10489
(
1998
).
8.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
9.
R. D.
Adamson
,
J. P.
Dombroski
, and
P. M. W.
Gill
,
J. Comput. Chem.
20
,
921
(
1999
).
10.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
11.
P. Y.
Ayala
and
G. E.
Scuseria
,
J. Chem. Phys.
110
,
3660
(
1999
).
12.
G. E.
Scuseria
and
P. Y.
Ayala
,
J. Chem. Phys.
111
,
8330
(
1999
).
13.
A. Savin, in Recent Advances in Density Functional Methods, Part I, edited by D. P. Chong (World Scientific, Singapore, 1995), p. 129.
14.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
15.
T.
Tsuneda
,
T.
Suzumura
, and
K.
Hirao
,
J. Chem. Phys.
110
,
10664
(
1999
).
16.
T.
Tsuneda
and
K.
Hirao
,
Chem. Phys. Lett.
268
,
510
(
1997
).
17.
A. J. H.
Wachters
,
J. Chem. Phys.
52
,
1033
(
1970
).
18.
A. J. H. Wachters, IBM Tech. Rept. RJ584 (1969).
19.
C. W.
Bauschlicher
, Jr.
,
S. R.
Langhoff
, and
L. A.
Barnes
,
J. Chem. Phys.
91
,
2399
(
1989
).
20.
C. W.
Murray
,
N. C.
Handy
, and
G. J.
Laming
,
Mol. Phys.
78
,
997
(
1993
).
21.
M. W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
M. J.
Frisch
,
Chem. Phys. Lett.
197
,
499
(
1992
).
22.
F. W.
Kutzler
and
G. S.
Painter
,
Phys. Rev. B
43
,
6865
(
1991
).
23.
J.
Guan
,
P.
Duffy
,
J. T.
Carter
,
D. P.
Chong
,
K. C.
Casida
,
M. E.
Casida
, and
M.
Wrinn
,
J. Chem. Phys.
98
,
4753
(
1993
), and references therein.
24.
T.
Tsuneda
and
K.
Hirao
,
Phys. Rev. B
62
,
15527
(
2000
).
25.
A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, edited by J. M. Seminario (Elsevier, Amsterdam, 1996), p. 327.
This content is only available via PDF.
You do not currently have access to this content.