Coupled cluster theory through quasiperturbative triple excitations [CCSD(T)] was used with large correlation consistent basis sets to obtain optimized structures, harmonic vibrational frequencies and atomization energies for 37 molecules from the G2/97 test set. In some cases, it proved possible to include the triple excitations iteratively via CCSDT. Use of various correlation consistent basis set sequences facilitated estimation of frozen core energies in the complete basis set limit. Tight d functions were added for all second row atoms in order to improve the basis set convergence properties. Core/valence correlation corrections were obtained from all electron CCSD(T)/cc-pCVQZ calculations. Scalar relativistic contributions to the atomization energy were obtained from configuration interaction mass-velocity/one-electron Darwin calculations and CCSD(T) Douglas–Kroll–Hess calculations. By combining results from the present work with previously reported findings, a total of 114 comparisons with reliable experimental data for molecular atomization energies were possible. A statistical analysis of the level of agreement with experiment was performed, leading to a mean absolute deviation of 0.8 kcal/mol and maximum absolute error of −4.4 kcal/mol. This represents the most thorough study to date of the reliability of a composite approach to computational thermochemistry based on coupled cluster theory. The approach avoids the use of additivity approximations to estimate the complete basis set limit and does not include empirical corrections to the electronic energy. Results from three parameterized methods (G2, G3, and CBS-Q) for the same set of molecules are compared to the coupled cluster results.

1.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
2.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
103
,
1063
(
1997
).
3.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
42
(
1998
).
4.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
112
,
7374
(
2000
).
5.
J.
Cioslowski
,
M.
Schimeczek
,
G.
Liu
, and
V.
Stoyanov
,
J. Chem. Phys.
113
,
9377
(
2000
).
6.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
7.
G. D.
Purvis
III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
8.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
9.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
10.
J. M. L.
Martin
,
J. Mol. Struct.: THEOCHEM
398
,
135
(
1997
).
11.
J. M. L. Martin, in Energetics of Stable Molecules and Reactive Intermediates; NATO ASI Series, edited by M. E. M. d. Piedade (Academic, Dordrecht, 1999), Vol. ASIC 535, p. 373.
12.
C. W.
Bauschlicher
, Jr.
and
A.
Ricca
,
J. Phys. Chem.
102
,
8044
(
1998
).
13.
C. W.
Bauschlicher
, Jr.
and
A.
Ricca
,
J. Phys. Chem. A
103
,
4313
(
1999
).
14.
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J.
Gauss
,
Chem. Phys. Lett.
317
,
116
(
2000
).
15.
A. G.
Császár
,
W. D.
Allen
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
108
,
9751
(
1998
).
16.
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
W.
Klopper
,
J. Chem. Phys.
112
,
9229
(
2000
).
17.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
108
,
154
(
1998
).
18.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
110
,
8384
(
1999
).
19.
D.
Feller
,
D. A.
Dixon
, and
K. A.
Peterson
,
J. Phys. Chem. A
102
,
7053
(
1998
).
20.
D. A.
Dixon
and
D.
Feller
,
J. Phys. Chem. A
102
,
8209
(
1998
).
21.
D. A.
Dixon
,
D.
Feller
, and
G.
Sandrone
,
J. Phys. Chem. A
103
,
4744
(
1999
).
22.
D.
Feller
and
D. A.
Dixon
,
J. Phys. Chem. A
104
,
3048
(
2000
).
23.
D.
Feller
and
J. A.
Franz
,
J. Phys. Chem. A
104
,
9017
(
2000
).
24.
B.
Ruscic
,
D.
Feller
,
D. A.
Dixon
,
K. A.
Peterson
,
L. B.
Harding
,
R. L.
Asher
, and
A. F.
Wagner
,
J. Phys. Chem. A
105
,
1
(
2001
).
25.
D. A. Dixon, D. Feller, and K. A. Peterson, J. Chem. Phys. (to be published).
26.
J. W.
Ochterski
,
G. A.
Petersson
, and
J. A.
Montgomery
, Jr.
,
J. Chem. Phys.
104
,
2598
(
1996
).
27.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
28.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
29.
C. W.
Bauschlicher
, Jr.
and
H.
Partridge
,
Chem. Phys. Lett.
240
,
533
(
1995
).
30.
J. M. L.
Martin
and
O.
Uzan
,
Chem. Phys. Lett.
282
,
16
(
1998
).
31.
T. H. Dunning, Jr., K. A. Peterson, and A. K. Wilson (in preparation).
32.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
33.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
34.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Phys. Chem.
97
,
18
(
1993
).
35.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
36.
J. M. L.
Martin
,
Chem. Phys. Lett.
259
,
669
(
1996
).
37.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Nagel
,
J. Chem. Phys.
106
,
9639
(
1997
).
38.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
39.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
40.
K. A. Peterson and T. H. Dunning, Jr., (in preparation).
41.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Gaussian, Inc. Pittsburg, PA, 1998.
42.
H.-J. Werner, P. J. Knowles, R. D. Amos et al., MOLPRO 2000 (2000).
43.
J. Anchell, E. Apra, D. Bernholdt et al., NWCHEM, Pacific Northwest National Laboratory, Richland, WA (1999).
44.
D.
Feller
,
J. Comput. Chem.
17
,
1571
(
1996
).
45.
C.
Hampel
,
K. A.
Peterson
, and
H. J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1990
).
46.
M. J. O.
Deegan
and
P. J.
Knowles
,
Chem. Phys. Lett.
227
,
321
(
1994
).
47.
P. J.
Knowles
,
C.
Hampel
, and
H. J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
48.
M.
Rittby
and
R. J.
Bartlett
,
J. Phys. Chem.
92
,
3033
(
1988
).
49.
J. F. Stanton, J. Gauss, J. D. Watts et al., ACES II, ACES II is a program product of the Quantum Theory Project, University of Florida, 1998. Integral packages include VMOL (J. Almlöf, P. R. Taylor);
VPROPS (P. R. Taylor);
ABACUS (T. Helgaker, H. J. A. Jensen, P. Jørgensen, J. Olsen and P. R. Taylor).
50.
M. W.
Chase
, Jr.
, NIST-JANAF Tables (4th Edition),
J. Phys. Chem. Ref. Data Suppl.
9
,
Suppl
.
1
(
1998
).
51.
R. S.
Grev
,
C. L.
Janssen
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
95
,
5128
(
1991
).
52.
P.
Jensen
and
P. R.
Bunker
,
J. Chem. Phys.
89
,
1327
(
1988
).
53.
T. J.
Lee
,
J. M. L.
Martin
, and
P. R.
Taylor
,
J. Chem. Phys.
102
,
254
(
1995
).
54.
J. M. L.
Martin
,
T. J.
Lee
, and
P. R.
Taylor
,
J. Chem. Phys.
108
,
676
(
1998
).
55.
J. M. L.
Martin
,
T. J.
Lee
,
P. R.
Taylor
, and
J.-P.
Francois
,
J. Chem. Phys.
103
,
2589
(
1995
).
56.
J. M. L.
Martin
,
T. J.
Lee
, and
P. R.
Taylor
,
J. Mol. Spectrosc.
160
,
105
(
1993
).
57.
J. M. L.
Martin
,
J. Chem. Phys.
108
,
2791
(
1998
).
58.
J. M. L.
Martin
,
Spectrochim. Acta, Part A
55
,
709
(
1999
).
59.
J. M. L.
Martin
and
T. J.
Lee
,
Chem. Phys. Lett.
200
,
502
(
1992
).
60.
Y.
Pak
and
R. C.
Woods
,
J. Chem. Phys.
106
,
6424
(
1997
).
61.
J. M. L.
Martin
and
P. R.
Taylor
,
J. Phys. Chem. A
102
,
2995
(
1998
).
62.
A.
Barbe
,
C.
Secroun
, and
P.
Jouve
,
J. Mol. Spectrosc.
49
,
171
(
1974
).
63.
X.
Wang
,
E. L.
Sibert
III
, and
J. M. L.
Martin
,
J. Chem. Phys.
112
,
1353
(
2000
).
64.
J. M. L.
Martin
,
K. K.
Baldridge
, and
T. J.
Lee
,
Mol. Phys.
97
,
945
(
1999
).
65.
J. M. L.
Martin
,
P. R.
Taylor
, and
T. J.
Lee
,
Chem. Phys. Lett.
205
,
535
(
1993
).
66.
J.
Pliva
,
V.
Spirko
, and
D.
Papousek
,
J. Mol. Spectrosc.
23
,
331
(
1967
).
67.
D. A.
Clabo
, Jr.
,
W. D.
Allen
,
R. B.
Remington
,
Y.
Yamaguchi
, and
H. F.
Schaefer
III
,
Chem. Phys.
123
,
187
(
1988
).
68.
J. M. L.
Martin
,
P. R.
Taylor
, and
T. J.
Lee
,
J. Chem. Phys.
99
,
286
(
1993
).
69.
W. D.
Allen
,
Y.
Yamaguchi
,
A. G.
Csaszar
,
D. A.
Clabo
Jr.
,
R. B.
Remington
, and
H. F.
Schaefer
III
,
Chem. Phys.
123
,
427
(
1990
).
70.
K. A.
Peterson
,
J. Chem. Phys.
53
,
1051
(
1997
).
71.
K. A.
Peterson
,
J. Chem. Phys.
109
,
8864
(
1998
).
72.
J. M. L.
Martin
,
J.-P.
Francois
, and
R.
Gijbels
,
J. Chem. Phys.
97
,
3530
(
1992
).
73.
J. M. L.
Martin
,
T. J.
Lee
, and
P. R.
Taylor
,
J. Chem. Phys.
97
,
8361
(
1992
).
74.
J. M. L.
Martin
and
T. J.
Lee
,
Chem. Phys. Lett.
258
,
129
(
1996
).
75.
J. M. L.
Martin
and
P. R.
Taylor
,
Mol. Phys.
96
,
681
(
1999
).
76.
A. L. L.
East
,
W. D.
Allen
, and
S. J.
Klippenstein
,
J. Chem. Phys.
102
,
8506
(
1995
).
77.
A. L. L.
East
,
C. S.
Johnson
, and
W. D.
Allen
,
J. Chem. Phys.
198
,
1299
(
1993
).
78.
C. E. Moore, Atomic Energy Levels (NSRDS-NBS 35, Office of Standard Reference Data, National Bureau of Standards, Washington, D.C., 1971).
79.
C. W.
Bauschlicher
, Jr.
,
J. Phys. Chem. A
104
,
2281
(
2000
).
80.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys.
82
,
89
(
1974
).
81.
B. A.
Hess
,
Phys. Rev. A
32
,
756
(
1985
).
82.
B. A.
Hess
,
Phys. Rev. A
33
,
3742
(
1986
).
83.
K. Andersson, M. R. A. Blomberg, M. P. Fülscher et al., Lund University, Sweden, 2000.
84.
W. A.
de Jong
,
R. J.
Harrison
, and
D. A.
Dixon
,
J. Chem. Phys.
114
,
48
(
2001
).
85.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
86.
J. A.
Pople
,
M.
Head-Gordon
,
D. J.
Fox
,
K.
Raghavachari
, and
L. A.
Curtiss
,
J. Chem. Phys.
90
,
5622
(
1989
).
87.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
88.
D.
Feller
,
J. Chem. Phys.
111
,
4373
(
1999
).
89.
D.
Feller
and
J. A.
Sordo
,
J. Chem. Phys.
112
,
5604
(
2000
).
90.
D.
Feller
and
J. A.
Sordo
,
J. Chem. Phys.
113
,
485
(
2000
).
91.
A.
Halkier
,
P.
Jørgensen
,
J.
Gauss
, and
T.
Helgaker
,
Chem. Phys. Lett.
274
,
235
(
1997
).
92.
E. R.
Davidson
and
D. W.
Silver
,
Chem. Phys. Lett.
52
,
403
(
1977
).
93.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
108
,
2511
(
1998
).
94.
S. A.
Kucharski
and
R. J.
Bartlett
,
J. Chem. Phys.
110
,
8233
(
1999
).
95.
J.
Berkowitz
,
G. B.
Ellison
, and
D.
Gutman
,
J. Phys. Chem.
98
,
2744
(
1994
).
96.
J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermodynamic Data of Organic Compounds, 2nd. ed. (Chapman and Hall, NY, 1986).
97.
E. J.
Prosen
,
F. W.
Maron
, and
F. D.
Rossini
,
J. Res. Natl. Bur. Stand.
46
,
106
(
1951
).
98.
R. D.
Johnson
III
and
J. W.
Hudgens
,
J. Phys. Chem.
100
,
19874
(
1996
).
99.
R. A.
Fletcher
and
G.
Pilcher
,
Trans. Faraday Soc.
66
,
794
(
1970
).
100.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data Suppl.
17
,
1
(
1988
).
101.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
G. S.
Kedziora
, and
J. A.
Pople
,
J. Phys. Chem.
105
,
227
(
2001
).
102.
C. W.
Bauschlicher
, Jr.
and
A.
Ricca
,
Chem. Phys. Lett.
315
,
449
(
1999
).
103.
C. W.
Bauschlicher
, Jr.
and
A.
Ricca
,
J. Phys. Chem. A
104
,
4581
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.