We study the microphase segregation of molten randomly grafted copolymers (RGCs) using a Landau field theory. Under one wave number approximation, we find three equilibrium ordered microphases: lamellar phase (LAM), hexagonal cylinder phase (HEX), and bcc sphere phase (BCC). The stability of these phases strongly depends on the architectural parameters describing the RGC chains (e.g., the backbone length, the branch length, and the number of branches). Our calculation reveals that RGCs with high average composition of backbone monomers or with low branching density tend to form LAM microstructures. For a small average composition of backbone monomers, HEX and BCC microphases appear in turn with increasing branching density. Independent of the architectural parameters and composition, the disorder to order transition for molten RGCs is always from the disordered phase to the LAM microphase. The physical reasons underlying this behavior and experimentally testable predictions are discussed.

1.
M.
Park
et al.,
Science
276
,
1401
(
1997
);
R.
Langer
,
Nature (London)
392
,
6679
(
1998
);
A. S.
Tse
,
Z. J.
Wu
, and
S. A.
Asher
,
Macromolecules
28
,
6533
(
1995
).
2.
L.
Leibler
,
Macromolecules
13
,
1602
(
1980
).
3.
F. S.
Bates
and
G. H.
Fredrickson
,
Annu. Rev. Phys. Chem.
41
,
525
(
1990
);
G. H.
Fredrickson
and
F. S.
Bates
,
Annu. Rev. Mater. Sci.
26
,
501
(
1996
).
4.
W.
Zheng
and
Z.-G.
Wang
,
Macromolecules
28
,
7215
(
1995
).
5.
A.
Sali
,
E. I.
Shakhnovich
, and
M.
Karplus
,
Nature (London)
369
,
248
(
1994
).
6.
H.
Frauenfelder
and
P. G.
Wolynes
,
Phys. Today
47
,
57
(
1994
).
7.
H. S.
Chan
and
K. A.
Dill
,
Phys. Today
46
,
24
(
1993
).
8.
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
76
,
1844
(
1996
).
9.
S.
Srebnik
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
77
,
3157
(
1996
).
10.
E. I.
Shakhnovic
and
A. M.
Gutin
,
J. Phys. (Paris)
50
,
1843
(
1989
).
11.
G. H.
Fredrickson
and
S. T.
Milner
,
Phys. Rev. Lett.
67
,
835
(
1991
);
G. H.
Fredrickson
,
S. T.
Milner
, and
L.
Leibler
,
Macromolecules
25
,
6341
(
1992
).
12.
A. M.
Gutin
,
A. Yu.
Grosberg
, and
E. I.
Shakhnovich
,
Macromolecules
26
,
3598
(
1993
).
13.
S. V.
Panyukov
and
I. I.
Potemkin
,
JETP Lett.
64
,
197
(
1996
);
S. V.
Panyukov
and
I. I.
Potemkin
,
JETP
85
,
183
(
1997
);
S. V.
Panyukov
and
I. I.
Potemkin
,
JETP
85
,
183
(
1997
);
I. I.
Potemkin
and
S. V.
Panyukov
,
Phys. Rev. E
57
,
6902
(
1998
);
S. V.
Panyukov
and
I. I.
Potemkin
,
Phys. A
249
,
321
(
1998
).
14.
A.
Nesarikar
,
M. O.
dela Cruz
, and
B.
Crist
,
J. Chem. Phys.
98
,
7385
(
1993
).
15.
A. V.
Dobrynin
and
L.
Leibler
,
Europhys. Lett.
36
,
283
(
1996
);
A. V.
Dobrynin
,
J. Chem. Phys.
107
,
9234
(
1997
).
16.
H. J.
Angerman
,
G.
tenBrinke
, and
I.
Erukhimovich
,
Macromolecules
29
,
3255
(
1996
);
H. J.
Angerman
,
G.
tenBrinke
, and
I.
Erukhimovich
,
Macromolecules
31
,
1958
(
1998
);
H. J.
Angerman
,
G.
tenBrinke
, and
J. J. M.
Slot
,
Euro. Phys. Journ. B
12
,
397
(
1999
).
17.
S.
Qi
,
A. K.
Chakraborty
,
H.
Wang
,
A. A.
Lefebvre
,
N. P.
Balsara
,
E. I.
Shakhnovich
,
M.
Xenidou
, and
N.
Hadjichristidis
,
Phys. Rev. Lett.
82
,
2896
(
1999
).
18.
S.
Qi
,
A. K.
Chakraborty
, and
N. P.
Balsara
,
J. Chem. Phys.
115
,
3387
(
2001
), preceding paper.
19.
M.
Xenidou
and
N.
Hadjichristidis
,
Macromolecules
31
,
5690
(
1998
).
20.
K. M.
Hong
and
J.
Noolandi
,
Macromolecules
14
,
727
(
1981
).
21.
S. F.
Edwards
and
P. W.
Anderson
,
J. Phys. (Paris)
5
,
965
(
1975
).
22.
M. W.
Matsen
and
R. B.
Thompson
,
J. Chem. Phys.
111
,
7139
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.