The structure and the low-energy vibrational dynamics of CO and NO chemisorbed on a Rh(111) surface have been investigated by means of He-atom scattering (HAS). For a dilute phase of isolated CO molecules a characteristic frequency of ℏω=5.7 meV is observed which shifts to 5.45 meV for the (3×3)R30° phase (θ=1/3). Based on isotope exchange measurements this mode is assigned to the parallel frustrated translational mode (T-mode) of CO at on-top sites. For the (2×2)3CO saturation structure a further molecular vibrational mode with a frequency of ℏω=11.7 meV is obtained and is assigned to the T-mode of CO adsorbed at hollow sites which are predominantly populated in this phase. The He-atom diffraction patterns indicate a successive appearance of various NO superstructures upon increasing NO exposure including a low coverage c(4×2), an intermediate (3×3) and finally the (2×2)3NO saturation structure. The corresponding inelastic HAS measurements reveal again two characteristic molecular vibrational modes at 7.5 and 11.5 meV which are identified as the T-modes of NO adsorbed at on-top and hollow sites, respectively. Moreover, for the NO saturation phase two additional phonon modes appear at energies below 14 meV. Based on a lattice dynamical analysis of their dispersion curves they are identified as a back-folded Rayleigh mode and a further perpendicular polarized phonon mode caused by the reduced Brillouin zone of the NO adlayer. The different T-mode frequencies for CO or NO at on-top and hollow sites suggest that this mode is a sensitive signature of adsorption sites rather than the commonly used internal stretch mode which had led to wrong adsorption site assignments.

1.
W. F. Egelhoff, Jr., in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, edited by D. A. King and D. P. Woodruff (Elsevier, Amsterdam, 1982), Vol. 4, Chap. 9.
2.
Based on a thermodynamically analysis [
J. B.
Benziger
,
Appl. Surf. Sci.
6
,
105
(
1980
)] bond dissociation energies of 151 and 257 kcal/mol were determined for NO and CO on Rh(111).
3.
G.
Blyholder
,
J. Phys. Chem.
68
,
2772
(
1964
).
4.
A.
Beutler
,
E.
Lundgren
,
R.
Nyholm
,
J. N.
Andersen
,
B.
Setlik
, and
D.
Heskett
,
Surf. Sci.
381
,
381
(
1997
).
5.
L. H.
Dubois
and
G. A.
Somorjai
,
Surf. Sci.
91
,
514
(
1980
).
6.
T. W.
Root
,
L. D.
Schmidt
, and
G. B.
Fisher
,
J. Chem. Phys.
85
,
4679
(
1986
);
T. W.
Root
,
L. D.
Schmidt
, and
G. B.
Fisher
,
J. Chem. Phys.
85
,
4687
(
1986
).
7.
C. T.
Kao
,
G. S.
Blackman
,
M. A.
Van Hove
,
G. A.
Somorjai
, and
C. M.
Chan
,
Surf. Sci.
224
,
77
(
1989
).
8.
D. H.
Wei
,
D. C.
Skelton
, and
S. D.
Kevan
,
Surf. Sci.
381
,
49
(
1997
).
9.
G.
Klivenyi
and
F.
Solymosi
,
Surf. Sci.
420
,
17
(
1999
).
10.
T. W.
Root
,
L. D.
Schmidt
, and
G. B.
Fisher
,
Surf. Sci.
134
,
30
(
1983
).
11.
T. W.
Root
,
L. D.
Schmidt
, and
G. B.
Fisher
,
Chem. Rev.
96
,
1307
(
1996
).
12.
L. A.
DeLouise
and
N.
Winograd
,
Surf. Sci.
159
,
199
(
1985
).
13.
M. C. P.
Hopstaken
,
W. J. H.
van Gennip
, and
J. W.
Niemantsverdriet
,
Surf. Sci.
433
,
69
(
1999
).
14.
M.
Beutl
,
J.
Lesnik
, and
K. D.
Rendulic
,
Surf. Sci.
429
,
71
(
1999
).
15.
Y. J.
Kim
,
S.
Thevuthasan
,
G. S.
Herman
,
C. H. F.
Pedan
,
S. A.
Chambers
,
D. N.
Belton
, and
H.
Permana
,
Surf. Sci.
359
,
269
(
1996
).
16.
E.
Lundgren
,
X.
Torrelles
,
J.
Alvarez
,
S.
Ferrerm
,
H.
Over
,
A.
Beutler
, and
J. N.
Andersen
,
Phys. Rev. B
59
,
5876
(
1999
).
17.
M.
Gierer
,
A.
Barbieri
,
M. A.
Van Hove
, and
G. A.
Somorjai
,
Surf. Sci.
391
,
176
(
1997
).
18.
I.
Zasada
,
M. A.
Van Hove
, and
G. A.
Somorjai
,
Surf. Sci.
418
,
L89
(
1998
).
19.
H.
Xu
and
K. Y. Simon
Ng
,
Surf. Sci.
365
,
779
(
1996
).
20.
P.
Cernota
,
K.
Rider
,
H. A.
Yoon
,
M.
Salmeron
, and
G. A.
Somorjai
,
Surf. Sci.
445
,
249
(
2000
).
21.
F.
Hofmann
and
J. P.
Toennies
, Chem. Rev. 1307 (1996).
22.
J.
Ellis
and
J. P.
Toennis
,
Phys. Rev. Lett.
70
,
2118
(
1993
);
J.
Ellis
and
J. P.
Toennis
,
Surf. Sci.
317
,
99
(
1994
).
23.
B. N. J.
Persson
,
E.
Tosatti
,
D.
Fuhrmann
,
G.
Witte
, and
Ch.
Wöll
,
Phys. Rev. B
59
,
11777
(
1999
).
24.
B. J.
Hinch
,
A.
Lock
,
H. H.
Madden
,
J. P.
Toennies
, and
G.
Witte
,
Phys. Rev. B
42
,
1547
(
1990
).
25.
D. M.
Smilgies
and
J. P.
Toennies
,
Rev. Sci. Instrum.
59
,
2185
(
1988
).
26.
G.
Witte
,
J. P.
Toennies
, and
Ch.
Wöll
,
Surf. Sci.
323
,
228
(
1995
).
27.
B.
Poelsema
,
S. T.
de Swart
, and
G.
Comsa
,
Phys. Rev. Lett.
49
,
578
(
1982
);
B.
Poelsema
,
S. T.
de Swart
, and
G.
Comsa
,
Phys. Rev. Lett.
51
,
522
(
1983
).
28.
B. Poelsema and G. Comsa, in Scattering of Thermal Energy Atoms from Disordered Surfaces, Springer Tracts in Modern Physics (Springer-Verlag, Heidelberg, Berlin, 1989), Vol. 115, p. 1.
29.
G.
Comsa
and
B.
Poelsema
,
Appl. Phys. A: Solids Surf.
38
,
153
(
1985
).
30.
A.
Bilic
and
B.
Gumhalter
,
Phys. Rev. B
52
,
12307
(
1995
).
31.
B.
Gumhalter
and
D. C.
Langreth
,
Phys. Rev. B
60
,
2789
(
1999
).
32.
M.
Henzler
,
Appl. Phys. A: Solids Surf.
34
,
205
(
1984
).
33.
J.
Braun
,
K. L.
Kostov
,
G.
Witte
, and
Ch.
Wöll
,
J. Chem. Phys.
106
,
8262
(
1997
).
34.
A. P.
Graham
and
J. P.
Toennies
,
Europhys. Lett.
42
,
449
(
1998
).
35.
J.
Ellis
,
J. P.
Toennies
, and
G.
Witte
,
J. Chem. Phys.
102
,
5059
(
1995
).
36.
G. Witte, B. Gumhalter, and A. Siber (in preparation).
37.
R. J.
Koestner
,
M. A.
van Hove
, and
G. A.
Somorjai
,
Surf. Sci.
107
,
439
(
1981
).
38.
J. R.
Manson
and
V.
Celli
,
Surf. Sci.
24
,
495
(
1971
).
39.
M. A.
van Hove
,
R. J.
Koestner
,
J. C.
Frost
, and
G. A.
Somorjai
,
Surf. Sci.
129
,
482
(
1983
).
40.
For the CO saturation structure =3/4) the effective mass of the top layer increases by m(Rh)→34m(CO)+m(Rh). Thus the effective isotope shift of the phonon energy (at the zone boundary) amounts to 34m(12C16O)+m(103Rh)/34m(13C18O)+m(103Rh) 0.9%.
41.
D. G.
Castner
,
B. A.
Sexton
, and
G. A.
Somorjai
,
Surf. Sci.
71
,
519
(
1978
).
42.
R. M.
Hardeveld
,
M. J. P.
Hopstaken
,
J. J.
Lukkien
,
P. A. J.
Hilbers
,
A. P. J.
Jansen
,
R. A.
van Santen
, and
J. W.
Niemandsverdriet
,
Chem. Phys. Lett.
302
,
98
(
1999
).
43.
P.
Fouquet
,
A. P.
Graham
, and
G.
Witte
,
J. Chem. Phys.
112
,
7600
(
2000
).
44.
For the NO saturation structure =3/4) the effective mass of the top layer increases by m(Rh)→34m(NO)+m(Rh) and causes a mass loading shift of the phonon energy of m(Rh)/34m(NO)+m(Rh)12%.
45.
R.
Berndt
,
A.
Lock
, and
Ch.
Wöll
,
Surf. Sci.
276
,
213
(
1992
).
46.
K. P.
Bohnen
,
A.
Eichler
, and
J.
Hafner
,
Surf. Sci.
368
,
222
(
1996
).
47.
A.
Eichler
,
K. P.
Bohnen
,
W.
Reichardt
, and
J.
Hafner
,
Phys. Rev. B
57
,
324
(
1998
).
48.
J.
Xie
and
M.
Scheffler
,
Phys. Rev. B
57
,
4768
(
1998
).
49.
The radial and tangential force constants, β and α, are given by the derivatives of the intermolecular potential with respect to the distance R according to β=∂2V/∂R2 and α=∂V/R∂R.
50.
For on-top sites radial and tangential force constants of β=302 N/m and α=6.5 N/m were used. In order to decouple the T-mode and the NO–Rh stretch mode, the hollow site adsorption was modeled by three quasi particles of mass 13×30 amu positioned on-top of the three involved rhodium atoms which yields effective force constants of β=300 N/m and α=11.2 N/m.
51.
P. A.
Thiel
,
E. D.
Williams
, and
J. T.
Yates
,
Surf. Sci.
84
,
54
(
1979
).
52.
Ha and Sibener observed with EELS a T-mode energy of 11.8 meV (Ref. 55) which they attributed originally to CO on bridge sites. Later, however, it was shown that CO occupies a threefold hollow site on Ni(111) (Ref. 56).
53.
M. V.
Pykhtin
,
A. M.
Rappe
, and
S. P.
Lewis
,
J. Chem. Phys.
113
,
10265
(
2000
).
54.
G.
Hähner
,
J. P.
Toennies
, and
Ch.
Wöll
,
Appl. Phys. A: Solids Surf.
51
,
208
(
1990
).
55.
J. S.
Ha
and
S. J.
Sibener
,
Surf. Sci.
256
,
281
(
1991
).
56.
L. D.
Mapeldoram
,
M. P.
Bessent
,
A.
Wander
, and
D. A.
King
,
Chem. Phys. Lett.
228
,
527
(
1994
).
57.
B. N. J. Persson, Sliding Friction, Springer Series NanoScience and Technology (Springer, Berlin, 1998).
This content is only available via PDF.
You do not currently have access to this content.