The reliability of density functional theory and other electronic structure methods is examined for anharmonicities and spectroscopic constants of the ground electronic states of several diatomic molecules. The equilibrium bond length re, harmonic vibrational frequency ωe, vibrational anharmonicity ωexe, rotational constant Be, centrifugal distortion constant e, and vibration-rotation interaction constant αe have been obtained theoretically for BF, CO, N2,CH+, and H2. Predictions using Hartree–Fock, coupled-cluster singles and doubles (CCSD), coupled cluster singles and doubles with perturbative triples [CCSD(T)], and various density functional methods (S-VWN, BLYP, and B3LYP) have been made using the 6-31G*, aug-cc-pVDZ, and aug-cc-pVTZ basis sets and compared to experimental values. Density functional theory predictions of the spectroscopic constants are reliable (particularly for B3LYP) and often perform as well as the more expensive CCSD and CCSD(T) estimates.

1.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
99
,
1914
(
1993
).
2.
K. A.
Peterson
,
R. A.
Kendall
, and
T. H.
Dunning
,
J. Chem. Phys.
99
,
1930
(
1993
).
3.
K. A.
Peterson
,
R. A.
Kendall
, and
T. H.
Dunning
,
J. Chem. Phys.
99
,
9790
(
1993
).
4.
T. D.
Crawford
and
H. F.
Schaefer
,
J. Chem. Phys.
104
,
6259
(
1996
).
5.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
6.
D.
Feller
and
J. A.
Sordo
,
J. Chem. Phys.
112
,
5604
(
2000
).
7.
X.
Li
and
J.
Paldus
,
Mol. Phys.
98
,
1185
(
2000
).
8.
H.
Meissner
and
J.
Paldus
,
Quantum Chem.
80
,
782
(
2000
).
9.
K.
Okada
and
S.
Iwata
,
J. Electron Spectrosc. Relat. Phenom.
108
,
225
(
2000
).
10.
R.
Wesendrup
,
L.
Kloo
, and
P.
Schwerdtfeger
,
Int. J. Mass. Spectrom.
201
,
17
(
2000
).
11.
P.
Botschwina
,
S.
Seeger
,
M.
Mladenović
,
B.
Schulz
,
M.
Horn
,
S.
Schmatz
,
J.
Flügge
, and
R.
Oswald
,
Int. Rev. Phys. Chem.
14
,
169
(
1995
).
12.
I. V.
Kochikov
,
Y. I.
Tarasov
,
V. P.
Spiridonov
,
G. M.
Kuramshina
, and
A.
Saakjan
,
J. Mol. Struct.
550-551
,
429
(
2000
).
13.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
14.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
15.
J.
Gauss
,
D.
Cremer
, and
J. F.
Stanton
,
J. Phys. Chem. A
104
,
1319
(
2000
).
16.
J.
Gauss
and
J. F.
Stanton
,
J. Phys. Chem. A
104
,
2865
(
2000
).
17.
D. A.
Clabo
,
W. D.
Allen
,
R. B.
Remington
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
Chem. Phys.
123
,
187
(
1988
).
18.
W. D.
Allen
,
Y.
Yamaguchi
,
A. G.
Császár
,
D. A.
Clabo
,
R.
Remington
, and
H. F.
Schaefer
,
Chem. Phys.
145
,
427
(
1990
).
19.
T. J.
Van Huis
,
M. L.
Leininger
,
C. D.
Sherrill
, and
H. F.
Schaefer
,
Collect. Czech. Chem. Commun.
63
,
1107
(
1998
).
20.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Vol. 16 in International Series of Monographs on Chemistry (Oxford, New York, 1989).
21.
A.
Miani
,
E.
Cané
,
P.
Palmieri
,
T.
Agostino
, and
N. C.
Handy
,
J. Chem. Phys.
112
,
248
(
2000
).
22.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
23.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
,
J. Phys. Chem.
98
,
11623
(
1994
).
24.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
25.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
26.
I. N. Levine, Molecular Spectroscopy (Wiley, New York, 1975).
27.
M. L.
Leininger
,
C. D.
Sherrill
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
6717
(
1998
).
28.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
29.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
30.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
31.
P. A. M.
Dirac
,
Proc. Cambridge Philos. Soc.
26
,
376
(
1930
).
32.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
33.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
34.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
35.
The B3LYP method used was that implemented in Q-CHEM 1.2; B3LYP has been modified in newer releases of Q-CHEM, and the old one may be accessed as B3LYP5.
36.
P.
Pulay
,
Mol. Phys.
17
,
197
(
1969
).
37.
J. D.
Goddard
,
N. C.
Handy
, and
H. F.
Schaefer
,
J. Chem. Phys.
71
,
1525
(
1979
).
38.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
,
J. Chem. Phys.
87
,
5361
(
1987
).
39.
G. E.
Scuseria
,
J. Chem. Phys.
94
,
442
(
1991
).
40.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
41.
C. A. White, J. Kong, D. R. Maurice et al., Q-CHEM 1.2 (Q-Chem, Inc., Export, Pennsylvania, 1998).
42.
J. F. Stanton, J. Gauss, W. J. Lauderdale, J. D. Watts, and R. J. Bartlett, ACES II. The package also contains modified versions of the MOLECULE Gaussian integral program of J. Almlöf and P. R. Taylor, the ABACUS integral derivative program written by T. U. Helgaker, H. J. Aa. Jensen, P. Jørgensen, and P. R. Taylor, and the PROPS property evaluation integral code of P. R. Taylor.
43.
J. R.
Thomas
,
B. J.
DeLeeuw
,
G.
Vacek
, and
H. F.
Schaefer
,
J. Chem. Phys.
98
,
1336
(
1993
).
44.
J. R.
Thomas
,
B. J.
DeLeeuw
,
G.
Vacek
,
T. D.
Crawford
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
99
,
403
(
1993
).
45.
C. W.
Bauschlicher
,
Chem. Phys. Lett.
246
,
40
(
1995
).
46.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
106
,
6430
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.