Quantum mechanical (QM) and quasi-classical trajectory (QCT) calculations have been performed for the Cl+H2,Cl+D2,Cl+HD→ HCl(DCl)+D(H) reactions in order to determine integral cross sections as a function of collision energy and for different reagent rotational quantum numbers using the recent ab initio BW2 potential energy surface (PES) by Bian and Werner [J. Chem. Phys. 112, 220 (2000)]. The results are compared with experimental data obtained by using the Doppler-selected time-of-flight technique. It has been found theoretically by both the QM and QCT methods that reagent rotation enhances reactivity in agreement with experiment. The QM results are found to be in quantitative agreement with the experimental excitation functions for the Cl+p-H2 and Cl+n-H2 reactions, whereas those obtained quasi-classically fail to reproduce the experimental data. These results are in strong contrast with those reported on the previous G3 PES, in which QM and QCT calculations predicted that reactivity decreases with reagent rotation. The intermolecular isotope effect, i.e., the ratio between the cross sections of the Cl+n-H2 and Cl+n-D2 reactions, Γinter(Cl+n-H2/Cl+n-D2), predicted by QM calculations on the BW2 surface is notably larger than that obtained experimentally.

1.
H.
Eyring
and
M.
Polanyi
,
Z. Phys. Chem. (Leipzig)
279
,
12
(
1931
).
2.
J. O.
Hirschfelder
,
H.
Eyring
, and
B.
Topley
,
J. Chem. Phys.
4
,
170
(
1936
).
3.
A.
Wheeler
,
B.
Topley
, and
H.
Eyring
,
J. Chem. Phys.
4
,
178
(
1936
).
4.
S.
Sato
,
J. Chem. Phys.
23
,
2465
(
1955
).
5.
D. L.
Thompson
,
H. H. S.
Jr.
, and
L. M.
Raff
,
J. Chem. Phys.
62
,
4727
(
1975
).
6.
R. E.
Weston
, Jr.
,
J. Phys. Chem.
83
,
61
(
1979
).
7.
J.
Miller
and
R. T.
Gordon
,
J. Chem. Phys.
78
,
3713
(
1983
).
8.
S. C.
Tucker
,
D. G.
Truhlar
,
B. C.
Garrett
, and
A. D.
Isaacson
,
J. Chem. Phys.
82
,
4102
(
1985
).
9.
D. W.
Schwenke
,
S. C.
Tucker
,
R.
Steckler
,
F. B.
Brown
,
G. C.
Lynch
,
D. G.
Truhlar
, and
B. C.
Garrett
,
J. Chem. Phys.
90
,
3110
(
1989
).
10.
K. Laidler, Chemical Kinetics, 3rd ed. (Harper and Row, New York, 1987).
11.
T. C. Allison, S. L. Mielke, D. W. Schwenke, G. C. Lynch, M. S. Gordon, and D. G. Truhlar, in Gas-Phase Reaction Systems: Experiments and Models 100 Years After Max Bodenstein, edited by J. Wolfum, H.-R. Volpp, R. Rannacher, and J. Warnatz (Springer, Heidelberg, 1996), p. 111.
12.
S. S.
Kumaran
,
K. P.
Lim
, and
J. V.
Michael
,
J. Chem. Phys.
101
,
9487
(
1994
).
13.
M.
Alagia
,
N.
Balucani
,
L.
Cartechini
et al.,
Science
273
,
1519
(
1996
).
14.
M.
Alagia
,
N.
Balucani
,
L.
Cartechini
et al.,
Phys. Chem. Chem. Phys.
2
,
599
(
2000
).
15.
N.
Balucani
,
L.
Cartechini
,
P.
Casavecchia
,
G. G.
Volpi
,
F. J.
Aoiz
,
L.
Bañares
,
M.
Menéndez
,
W.
Bian
, and
H.-J.
Werner
,
Chem. Phys. Lett.
328
,
500
(
2000
).
16.
S.-H.
Lee
,
L.-H.
Lai
,
K.
Liu
, and
H.
Chang
,
J. Chem. Phys.
110
,
8229
(
1999
).
17.
D.
Skouteris
,
D. E.
Manolopoulos
,
W.
Bian
,
H.-J.
Werner
,
L.-H.
Lai
, and
K.
Liu
,
Science
286
,
1713
(
1999
).
18.
S.-H.
Lee
and
K.
Liu
,
J. Chem. Phys.
111
,
6253
(
1999
).
19.
T. C.
Allison
,
G. C.
Lynch
,
D. G.
Truhlar
, and
M. S.
Gordon
,
J. Phys. Chem.
100
,
13
575
(
1996
).
20.
H.
Wang
,
W. H.
Thompson
, and
W. H.
Miller
,
J. Chem. Phys.
107
,
7194
(
1997
).
21.
T. C.
Allison
,
G. C.
Lynch
,
D. G.
Truhlar
, and
M. S.
Gordon
,
J. Phys. Chem.
100
,
13
588
(
1996
).
22.
F. J.
Aoiz
and
L.
Bañares
,
Chem. Phys. Lett.
247
,
232
(
1995
).
23.
F. J.
Aoiz
and
L.
Bañares
,
J. Phys. Chem.
100
,
18108
(
1996
).
24.
W.
Bian
and
H.-J.
Werner
,
J. Chem. Phys.
112
,
220
(
2000
).
25.
K.
Stark
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6515
(
1996
).
26.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
27.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
28.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
29.
U.
Manthe
,
W.
Bian
, and
H.-J.
Werner
,
Chem. Phys. Lett.
313
,
647
(
1999
).
30.
D.
Skouteris
,
H.-J.
Werner
,
F. J.
Aoiz
,
L.
Bañares
,
J. F.
Castillo
,
M.
Menéndez
,
N.
Balucani
,
L.
Cartechini
, and
P.
Casavecchia
,
J. Chem. Phys.
114
,
10662
(
2001
).
31.
B.
Yang
,
H.
Gao
,
K.
Han
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
113
,
1434
(
2000
).
32.
B.
Yang
,
B.
Tang
,
H.
Yin
,
K.
Han
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
113
,
7182
(
2000
).
33.
B.
Yang
,
H.
Yin
,
K.
Han
, and
J. Z. H.
Zhang
,
J. Phys. Chem. A
113
,
10517
(
2000
).
34.
F. J.
Aoiz
,
L.
Bañares
, and
V. J.
Herrero
,
J. Chem. Soc., Faraday Trans.
94
,
2483
(
1998
).
35.
D.
Skouteris
,
J. F.
Castillo
, and
D. E.
Manolopoulos
,
Comput. Phys. Commun.
133
,
128
(
2000
).
36.
J. F.
Castillo
,
B.
Hartke
,
H.-J.
Werner
,
F. J.
Aoiz
,
L.
Bañares
, and
B.
Martı́nez-Haya
,
J. Chem. Phys.
109
,
7224
(
1998
).
37.
J. F.
Castillo
and
D. E.
Manolopoulos
,
Faraday Discuss.
110
,
119
(
1998
).
38.
R. T.
Skodje
,
D.
Skouteris
,
D. E.
Manolopoulos
,
S.-H.
Lee
,
F.
Dong
, and
K.
Liu
,
Phys. Rev. Lett.
85
,
1206
(
2000
).
39.
K. Liu, private communication.
40.
F. Dong, S.-H. Lee, and K. Liu, J. Chem. Phys. (to be published).
41.
The partial cross section, σRJ, as a function of total angular momentum J has been calculated as σRJ=π/k2(2J+1)P(J), where k=(2μEcol)1/2/ℏ, P(J) is the opacity function, and μ is the reduced mass of the Cl–H2 system.
42.
G. Capecchi and H.-J. Werner (work in progress).
This content is only available via PDF.
You do not currently have access to this content.