The total atomization energy at absolute zero, (TAE0) of benzene, C6H6, was computed fully ab initio by means of W2h theory as 1306.6 kcal/mol, to be compared with the experimentally derived value 1305.7±0.7 kcal/mol. The computed result includes contributions from inner-shell correlation (7.1 kcal/mol), scalar relativistic effects (−1.0 kcal/mol), atomic spin–orbit splitting (−0.5 kcal/mol), and the anharmonic zero-point vibrational energy (62.1 kcal/mol). The largest-scale calculations involved are CCSD/cc-pV5Z and CCSD(T)/cc-pVQZ; basis set extrapolations account for 6.3 kcal/mol of the final result. Performance of more approximate methods has been analyzed. Our results suggest that, even for systems the size of benzene, chemically accurate molecular atomization energies can be obtained from fully first-principles calculations, without resorting to corrections or parameters derived from experiment.

1.
K. K. Irikura and D. J. Frurip, Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (American Chemical Society, Washington, D.C., 1998).
2.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
3.
J. A.
Montgomery
, Jr.
,
M. J.
Frisch
,
J. W.
Ochterski
, and
G. A.
Petersson
,
J. Chem. Phys.
110
,
2822
(
1999
).
4.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
110
,
8384
(
1999
);
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
108
,
154
(
1998
).
5.
D.
Feller
and
D. A.
Dixon
,
J. Phys. Chem. A
104
,
3048
(
2000
).
6.
W. Klopper, in Modern Methods and Algorithms of Quantum Chemistry, edited by J. Grotendorst [John von Neumann Institute for Computer Science (NIC), Jülich, Germany, 2000].
7.
See e.g.,
C. W.
Bauschlicher
,Jr.
and
A.
Ricca
,
Chem. Phys. Lett.
315
,
449
(
1999
);
C. W.
Bauschlicher
, Jr.
,
J. Phys. Chem. A
103
,
6429
(
1999
).
8.
J. M. L. Martin, in Energetics of Stable Molecules and Reactive Intermediates, NATO ASI Series C, edited by M. E. Minas da Piedade (Kluwer, Dordrecht, 1999), Vol. 535, pp. 373–415.
9.
J. M. L.
Martin
and
G.
de Oliveira
,
J. Chem. Phys.
111
,
1843
(
1999
).
10.
S.
Parthiban
and
J. M. L.
Martin
,
J. Chem. Phys.
114
,
6014
(
2001
).
11.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
12.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
42
(
1998
).
13.
MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, A. Berning et al.
14.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
15.
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
16.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
T. H. Dunning, Jr., K. A. Peterson, D. E. Woon, “Correlation consistent basis sets for molecular calculations,” in Encyclopedia of Computational Chemistry, edited by P. von Ragué Schleyer (Wiley, Chichester, 1998).
17.
R. D.
Cowan
and
M.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
(
1976
).
18.
R. L.
Martin
,
J. Phys. Chem.
87
,
750
(
1976
).
19.
R. J.
Gdanitz
and
R.
Ahlrichs
,
Chem. Phys. Lett.
143
,
413
(
1988
).
20.
M.
Schütz
,
R.
Lindh
, and
H.-J.
Werner
,
Mol. Phys.
96
,
719
(
1999
).
21.
J.
Gauss
and
J. F.
Stanton
,
J. Phys. Chem. A
104
,
2865
(
2000
).
22.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
23.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.7 (Gaussian, Inc., Pittsburgh, Pennsylvania, 1998).
24.
E.
Miani
,
E.
Cané
,
P.
Palmieri
,
A.
Trombetti
, and
N. C.
Handy
,
J. Chem. Phys.
112
,
248
(
2000
).
25.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
26.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
27.
J. M. L.
Martin
,
P. R.
Taylor
, and
T. J.
Lee
,
Chem. Phys. Lett.
275
,
414
(
1997
).
28.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
114
,
108
(
2001
).
29.
G. S.
Kedziora
,
J. A.
Pople
,
V. A.
Rassolov
,
M. A.
Ratner
,
P. C.
Redfern
, and
L. A.
Curtiss
,
J. Chem. Phys.
110
,
7123
(
1999
).
30.
J. M. L.
Martin
,
A.
Sundermann
,
P. L.
Fast
, and
D. G.
Truhlar
,
J. Chem. Phys.
113
,
1348
(
2000
).
31.
C. W.
Bauschlicher
, Jr.
,
J. Phys. Chem. A
104
,
2281
(
2000
).
32.
P. J.
Knowles
,
C. A.
Hampel
, and
H. J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
);
P. J.
Knowles
,
C. A.
Hampel
, and
H. J.
Werner
,
J. Chem. Phys.
112
,
3106
(E) (
2000
). Note that the implementation in all versions of MOLPRO prior to 2000.1 is afflicted by the bug detailed in said erratum: as a result, the RCCSD(T)/UCCSD(T) difference reported in Ref. 5 should be reduced by 0.2 kcal/mol.
33.
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J.
Gauss
,
Chem. Phys. Lett.
317
,
116
(
2000
).
34.
J. D.
Watts
,
I.
Cernusak
,
J.
Noga
,
R. J.
Bartlett
,
C. W.
Bauschlicher
, Jr.
,
T. J.
Lee
,
A. P.
Rendell
, and
P. R.
Taylor
,
J. Chem. Phys.
93
,
8875
(
1990
).
35.
J. A.
Montgomery
, Jr.
,
J. A.
Ochterski
, and
G. A.
Petersson
,
J. Chem. Phys.
101
,
5900
(
1994
).
36.
H. Y. Afeefy, J. F. Liebman, and S. E. Stein, “Neutral Thermochemical Data” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by W. G. Mallard and P. J. Linstrom, November 1998, National Institute of Standards and Technology, Gaithersburg, MD 20899 (http://webbook.nist.gov/chemistry/).
37.
M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, and G. N. Roganov, Thermodynamics of Organic Compounds in the Gas State (Thermodynamics Research Center, College Station, TX, 1994).
38.
J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for Thermodynamics (Hemisphere, New York, 1989); see also http://www.codata.org/codata/databases/key1.html
This content is only available via PDF.
You do not currently have access to this content.