In molecules with an odd number of electrons when the spin-orbit interaction is added to the nonrelativistic Coulomb Hamiltonian the dimension of the seam of conical intersection is reduced from Nint−2 to Nint−3 or Nint−5. A generally applicable algorithm for locating points of conical intersection in such molecules is derived. The algorithm is based on a perturbative description of the vicinity of a point of conical intersection analogous to that used previously in the nonrelativistic case. It is tested using model Hamiltonians with quite promising results. An implementation of the algorithm based on ab initio wave functions is presented which treats the spin-orbit interaction within the Breit–Pauli approximation and incorporates it into the electronic Hamiltonian using the adiabatic states of the nonrelativistic Hamiltonian as a basis. An initial test of this implementation also yielded quite promising results.

1.
J.
von Neumann
and
E.
Wigner
,
Phys. Z.
30
,
467
(
1929
).
2.
L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1960).
3.
H.
Kramers
,
Proc. Acad. Sci. Amsterdam
33
,
959
(
1930
).
4.
C. A.
Mead
,
J. Chem. Phys.
70
,
2276
(
1979
).
5.
J.
Schon
and
H.
Köppel
,
J. Chem. Phys.
108
,
1503
(
1998
).
6.
L. S.
Cederbaum
,
W.
Domcke
,
W.
Schirmer
, and
W.
v Niessen
,
Adv. Chem. Phys.
65
,
115
(
1986
).
7.
B. A. Hess and C. M. Marian, in Relativistic Effects in the Calculation of the Electronic Energy, in Computational Molecular Spectroscopy, edited by P. Jensen and P. Bunker (Wiley, Chichester, 2000), pp. 169–220.
8.
H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One and Two Electron Atoms (Plenum/Rosetta, New York, 1977).
9.
S. R. Langhoff and C. W. Kern, in Molecular Fine Structure, in Modern Theoretical Chemistry, Vol. 4, edited by H. F. Schaefer (Plenum, New York, 1977), p. 381.
10.
D. R.
Yarkony
,
Int. Rev. Phys. Chem.
11
,
195
(
1992
).
11.
P. O.
Löwdin
,
J. Mol. Spectrosc.
10
,
12
(
1963
).
12.
D. R.
Yarkony
,
J. Chem. Phys.
89
,
7324
(
1988
).
13.
C. A.
Mead
,
J. Chem. Phys.
78
,
807
(
1983
).
14.
D. R.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
15.
C. A.
Mead
,
Chem. Phys.
49
,
33
(
1980
).
16.
D. R. Yarkony, in Molecular Structure, in Atomic, Molecular and Optical Physics Handbook, edited by G. L. Drake (AIP, New York, 1996), pp. 357–377.
17.
C. A.
Mead
,
J. Chem. Phys.
70
,
2276
(
1979
).
18.
M. Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill, New York, 1964).
19.
D. R.
Yarkony
,
J. Phys. Chem. A
105
,
6277
(
2001
).
20.
D. R.
Yarkony
,
J. Phys. Chem.
100
,
17439
(
1996
).
21.
S.
Yabushita
,
Z.
Zhang
, and
R. M.
Pitzer
,
J. Phys. Chem. A
103
,
5791
(
1999
).
22.
B. H. Lengsfield and D. R. Yarkony, in Nonadiabatic Interactions Between Potential Energy Surfaces: Theory and Applications, in State-Selected and State to State Ion-Molecule Reaction Dynamics: Part 2 Theory, Vol. 82, edited by M. Baer and C.-Y. Ng (Wiley, New York, 1992), pp. 1–71.
23.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
24.
D. R.
Yarkony
,
J. Chem. Phys.
112
,
2111
(
2000
).
25.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
26.
D. R.
Yarkony
,
Rev. Mod. Phys.
68
,
985
(
1996
).
27.
B. C.
Hoffman
and
D. R.
Yarkony
,
J. Chem. Phys.
113
,
10091
(
2000
).
28.
M. I.
Lester
,
R. A.
Loomis
,
R. L.
Schwartz
, and
S. P.
Walch
,
J. Phys. Chem. A
101
,
9195
(
1997
).
29.
D. R.
Yarkony
,
J. Chem. Phys.
111
,
6661
(
1999
).
30.
M. R.
Manaa
and
D. R.
Yarkony
,
J. Chem. Phys.
99
,
5251
(
1993
).
31.
S.-H.
Lee
,
L.-H.
Lai
,
K.
Liu
, and
H.
Chang
,
J. Chem. Phys.
110
,
8229
(
1999
).
32.
S.-H.
Lee
and
K.
Liu
,
J. Chem. Phys.
111
,
6253
(
1999
).
33.
G.
Chaban
and
M. S.
Gordon
,
Chem. Phys. Lett.
278
,
195
(
1997
).
34.
J.
Williams
and
M. H.
Alexander
,
J. Chem. Phys.
112
,
5722
(
2000
).
35.
M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
36.
W. C.
Swope
,
H. F.
Schaefer
, and
D. R.
Yarkony
,
J. Chem. Phys.
73
,
407
(
1980
).
37.
R.
McWeeny
,
J. Chem. Phys.
42
,
1717
(
1965
).
38.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
39.
Y. Yamaguchi, Y. Osamura, J. D. Goddard, and H. F. Schaefer, A New Dimension to Quantum Chemistry: Analytic Derivative Methods in ab initio Molecular Electronic Structure Theory (Oxford University Press, Oxford, 1994).
This content is only available via PDF.
You do not currently have access to this content.