We present a dynamic implementation of the Clausius–Clapeyron integration (CCI) method for mapping out phase-coexistence boundaries through a single atomistic simulation run. In contrast to previous implementations, where the reversible path of coexistence conditions is generated from a series of independent equilibrium simulations, dynamic Clausius–Clapeyron integration (d-CCI) explores an entire coexistence boundary in a single nonequilibrium simulation. The method gives accurately the melting curve for a system of particles interacting through the Lennard-Jones potential. Furthermore, we apply d-CCI to compute the melting curve of an ab initio pair potential for argon and verify earlier studies on the effects of many-body interactions and quantum effects in the melting of argon. The d-CCI method shows to be effective in both applications, giving converged coexistence curves spanning a wide range of thermodynamic states from relatively short nonequilibrium simulations.

1.
D. A.
Kofke
,
Mol. Phys.
78
,
1331
(
1993
);
D. A.
Kofke
,
J. Chem. Phys.
98
,
4149
(
1993
).
2.
D. A. Kofke, in Advances in Chemical Physics, Vol. 105 in Monte Carlo Methods in Chemical Physics, edited by D. M. Ferguson, J. I. Siepman, and D. G. Truhlar (Wiley, New York, 1999).
3.
R.
Agrawal
and
D. A.
Kofke
,
Phys. Rev. Lett.
74
,
122
(
1995
).
4.
R.
Agrawal
and
D. A.
Kofke
,
Mol. Phys.
85
,
23
(
1995
).
5.
R.
Agrawal
and
D. A.
Kofke
,
Mol. Phys.
85
,
43
(
1995
).
6.
R.
Boehler
,
M.
Ross
, and
D. B.
Boercker
,
Phys. Rev. B
53
,
556
(
1996
).
7.
E. J.
Meijer
and
F.
El Azhar
,
J. Chem. Phys.
106
,
4678
(
1997
).
8.
M. R.
Hitchcock
and
C. K.
Hall
,
J. Chem. Phys.
110
,
11433
(
1999
).
9.
J. M.
Polson
and
D.
Frenkel
,
J. Chem. Phys.
111
,
1501
(
1999
).
10.
A.
Strachan
,
T.
Cagin
, and
W. A.
Goddard
III
,
Phys. Rev. B
60
,
15084
(
1999
).
11.
J. B.
Sturgeon
and
B. B.
Laird
,
Phys. Rev. B
62
,
14720
(
2000
).
12.
D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, 1996).
13.
M.
de Koning
,
A.
Antonelli
, and
S.
Yip
,
Phys. Rev. Lett.
83
,
3973
(
1999
).
14.
M.
de Koning
,
W.
Cai
,
A.
Antonelli
, and
S.
Yip
,
Comput. Sci. Eng.
2
,
88
(
2000
).
15.
W. P.
Reinhardt
and
J. E.
Hunter
III
,
J. Chem. Phys.
97
,
1599
(
1992
).
16.
M. A.
Miller
and
W. P.
Reinhardt
,
J. Chem. Phys.
113
,
7035
(
2000
).
17.
J. E.
Hunter
III
,
W. P.
Reinhardt
, and
T. F.
Davis
,
J. Chem. Phys.
99
,
6856
(
1993
).
18.
L. M.
Amon
and
W. P.
Reinhardt
,
J. Chem. Phys.
113
,
3573
(
2000
).
19.
C.
Jarzynksi
,
Phys. Rev. Lett.
78
,
2690
(
1997
);
C.
Jarzynksi
,
Phys. Rev. E
56
,
5018
(
1997
).
20.
G. E.
Crooks
,
J. Stat. Phys.
90
,
1481
(
1998
).
21.
D. A.
Hendrix
and
C.
Jarzynski
,
J. Chem. Phys.
114
,
5974
(
2001
).
22.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989).
23.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
,
J. Chem. Phys.
97
,
2635
(
1992
).
24.
G. J.
Martyna
,
D. J.
Tobias
, and
M.
Klein
,
J. Chem. Phys.
101
,
4177
(
1994
).
25.
D.
Frenkel
and
A. J. C.
Ladd
,
J. Chem. Phys.
81
,
3188
(
1984
).
26.
D. A.
Young
and
F. J.
Rogers
,
J. Chem. Phys.
81
,
2789
(
1984
).
27.
D. E.
Woon
,
Chem. Phys. Lett.
204
,
29
(
1993
).
28.
E.
Ermakova
,
J.
Solca
,
H.
Huber
, and
M.
Welker
,
J. Chem. Phys.
102
,
4942
(
1994
).
29.
J.
Solca
,
A. J.
Dyson
,
G.
Steinebrunner
,
B.
Kirchner
, and
H.
Huber
,
Chem. Phys.
224
,
253
(
1997
).
30.
J.
Solca
,
A. J.
Dyson
,
G.
Steinebrunner
,
B.
Kirchner
, and
H.
Huber
,
J. Chem. Phys.
108
,
4107
(
1998
).
31.
S. R.
Phillpot
,
J. F.
Lutsko
,
D.
Wolf
, and
S.
Yip
,
Phys. Rev. B
40
,
2831
(
1989
).
32.
J. F.
Lutsko
,
D.
Wolf
,
S. R.
Phillpot
, and
S.
Yip
,
Phys. Rev. B
40
,
2841
(
1989
).
33.
W. H.
Hardy
,
R. K.
Crawford
, and
W. B.
Daniels
,
J. Chem. Phys.
54
,
1005
(
1971
).
This content is only available via PDF.
You do not currently have access to this content.