The wetting behavior of a polymer liquid on a coated substrate is investigated via numerical self-consistent field calculations and experiments. The polymer does not wet the coated substrate, but the substrate might stabilize a mesoscopic film. Experiments observe a stable mesoscopic film of nanometer thickness in coexistence with macroscopic drops at high temperatures. Upon cooling, this mesoscopic polymer film breaks up into droplets (nano-dewetting). Our self-consistent field calculations suggest that the stability of the mesoscopic film is determined by a subtle interplay between van der Waals forces and short-ranged forces due to the distortion of the profile in the vicinity of the substrate.

1.
G.
Reiter
,
Phys. Rev. Lett.
68
,
75
(
1992
).
2.
R.
Yerushalmi-Rozen
and
J.
Klein
,
Langmuir
11
,
2806
(
1995
).
3.
R.
Xie
,
A.
Karim
,
J. F.
Douglas
,
C. C.
Han
, and
R. A.
Weiss
,
Phys. Rev. Lett.
81
,
1251
(
1998
).
4.
P.
Müller-Buschbaum
,
P.
Vanhorne
,
V.
Scheumann
, and
M.
Stamm
,
Europhys. Lett.
40
,
655
(
1997
).
5.
K.
Jacobs
,
S.
Herminghaus
, and
K. R.
Mecke
,
Langmuir
14
,
965
(
1998
).
6.
D. W.
Schubert
,
Polym. Bull. (Berlin)
38
,
177
(
1997
).
7.
G.
Reiter
,
Langmuir
9
,
1344
(
1993
).
8.
P.
Müller-Buschbaum
,
J. S.
Gutmann
, and
M.
Stamm
,
Phys. Chem. Chem. Phys.
1
,
3857
(
1999
).
9.
C.
Redon
,
F.
Brochard-Wyart
, and
F.
Rondelez
,
Phys. Rev. Lett.
66
,
715
(
1991
).
10.
G.
Reiter
,
P.
Auroy
, and
L.
Auvray
,
Macromolecules
29
,
2150
(
1996
).
11.
K.
Jacobs
,
R.
Seemann
,
G.
Schatz
, and
S.
Herminghaus
,
Langmuir
14
,
4961
(
1998
).
12.
M.
Sferrazza
,
M.
Heppenstall-Butler
,
R.
Cubitt
,
D.
Bucknall
,
J.
Webster
, and
R. A. L.
Jones
,
Phys. Rev. Lett.
81
,
5173
(
1998
).
13.
P.
Müller-Buschbaum
,
J. S.
Gutmann
,
R.
Cubitt
, and
M.
Stamm
,
Colloid Polym. Sci.
277
,
1193
(
1999
).
14.
R.
Seemann
,
S.
Herminghaus
, and
K.
Jakobs
,
J. Phys.: Condens. Matter
13
,
4925
(
2001
);
R.
Seemann
,
S.
Herminghaus
, and
K.
Jakobs
,
Phys. Rev. Lett.
86
,
5534
(
2001
).
15.
F.
Brochard-Wyart
,
C.
Redon
, and
C.
Sykes
,
C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
314
,
19
(
1992
).
16.
V. S.
Mitlin
,
J. Colloid Interface Sci.
156
,
491
(
1993
).
17.
The sign of the long-ranged van der Waals interactions is erroneous in Ref. 4.
18.
M. Schick, in Les Houches, Liquids at Interfaces, edited J. Charvolin, J. F. Joanny, and J. Zinn-Justin (Elsevier Science, New York, 1990).
19.
A. M. Cazabat, in Ref. 18, p. 374.
20.
L. G.
Parrat
,
Phys. Rev.
55
,
359
(
1954
).
21.
M. Born and E. Wolf, in Principles of Optics, 2nd ed. (Pergamon, Oxford, 1964).
22.
R. W. James, in The Optical Principles of the Diffraction of X-Rays (OxBow Woodbridge, CT, 1962).
23.
M.
Stamm
and
D. W.
Schubert
,
Annu. Rev. Mater. Sci.
25
,
325
(
1995
).
24.
P.
Müller-Buschbaum
and
M.
Stamm
,
Macromolecules
31
,
3686
(
1998
).
25.
In our calculations the nano-droplets arise from the instability of a mesoscopically thick film at low temperatures, which is the equilibrium structure at a higher temperature. There are alternative kinetic pathways which might lead to nano-droplets. For example, during the dewetting process, large droplets might leave behind a Landau–Levich film
[
L.
Landau
and
B.
Levich
,
Acta Physicochim. URSS
17
,
42
(
1942
)]. This mesoscopically thick film is a kinetic phenomenon, which then dewets due to dispersion forces.
26.
Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K. Binder (Oxford University Press, Oxford, 1995).
27.
M. S.
Wertheim
,
J. Chem. Phys.
87
,
7323
(
1987
).
28.
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1057
(
1988
).
29.
L. G.
MacDowell
,
M.
Müller
,
C.
Vega
, and
K.
Binder
,
J. Chem. Phys.
113
,
419
(
2000
).
30.
Y.
Tang
and
B. C. Y.
Lu
,
AIChE J.
43
,
2215
(
1997
).
31.
In analogy to Ref. 14, we have adjusted the parameter c of the monomer–wall potential (3.5) such that the long-ranged contribution to the interface potential yields a contact angle of about 7.5°: c(191 Å)=213.7σ6 (Ref. 14); c(24 Å)=17.3σ6 (Ref. 14), and c(9 Å)=0.253σ6. The range of the attractive portion of the monomer–wall potential becomes larger the larger the thickness of the oxide layer. This is somewhat unphysical, because Vwall corresponds at small distances to the interaction between the PS segments and the SiOx layer. In compensation, we have decreased the contact interaction Vc for the thicker oxide layer such that the minimum at the wall and the interface potential for l→∞ have roughly the same value (cf. Fig. 6). Figure 8 shows that the qualitative behavior of the interface potential is not affected.
32.
M.
Müller
and
L. G.
MacDowell
,
Macromolecules
33
,
3902
(
2000
).
33.
M.
Müller
and
L. G.
MacDowell
,
Europhys. Lett.
55
,
221
(
2001
).
34.
E.
Helfand
,
J. Chem. Phys.
62
,
999
(
1975
).
35.
W. H. Press, S. A. Teukolky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C—The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 1992), p. 389.
36.
If we did not modify the coefficient c, even the long-ranged contribution gexp alone would not have a minimum at a mesoscopic distance.
37.
O. Wunnike, Dissertation (unpublished).
38.
E.
Bertrand
,
H.
Dobbs
,
D.
Broseta
,
J. O.
Indekeu
,
D.
Bonn
, and
J.
Meunier
,
Phys. Rev. Lett.
85
,
1282
(
2000
).
39.
J. O.
Indekeu
,
K.
Ragil
,
D.
Bonn
,
D.
Broseta
, and
J.
Meunier
,
J. Stat. Phys.
95
,
1009
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.