The formation of the two ionic products of Cl+F versus Arn+F is controlled by variation of the time delay between two ultrafast UV pulses. The Arn+F exciplex is characterized by a fluorescence band at 355 nm and the Cl+F product by the D emission at 420 nm. In this Tannor–Kosloff–Rice control scheme, the pump pulse dissociates ClF in a solid argon matrix. During the early dynamics in the matrix cage the F fragments have sufficient kinetic energy to closely approach the Ar atoms. Here a control pulse, which is delayed by typically 3 ps, induces the ionic bond Arn+F. Energy loss by collisions with the cage leads to recombination and vibrational relaxation in the B state of ClF. A control pulse delayed by 30–100 ps leads to exclusive formation of the ionic bond Cl+F. A switching contrast better than 1 to 10 can be achieved in both directions. The control scheme makes use of the time scale of vibrational relaxation. By femtosecond pump–probe spectroscopy we show the wave packet oscillations from the recombination dynamics in the cage lasting for 2 ps and determine the subsequent decay of vibrational energy.

1.
A. Rice and M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000).
2.
J. Manz, in Femtochemistry and Femtobiology, edited by V. Sundström (World Scientific, Singapore, 1997), pp. 1–222.
3.
A. H.
Zewail
,
J. Phys. Chem. A
104
,
5660
(
2000
).
4.
D. J.
Tannor
,
R.
Kosloff
, and
S. A.
Rice
,
J. Chem. Phys.
85
,
5805
(
1986
).
5.
D. J.
Tannor
and
S.
Rice
,
J. Chem. Phys.
83
,
5013
(
1985
).
6.
M.
Shapiro
,
C.
Zhidang
, and
P.
Brumer
,
Chem. Phys.
217
,
325
(
1997
).
7.
P.
Brumer
and
M.
Shapiro
,
Annu. Rev. Phys. Chem.
43
,
257
(
1992
).
8.
M.
Shapiro
and
P.
Brumer
,
J. Chem. Phys.
84
,
540
(
1986
).
9.
A. P.
Peirce
,
M.
Dahleh
, and
H.
Rabiz
,
Phys. Rev. A
37
,
4950
(
1988
).
10.
R.
Gordon
and
S.
Rice
,
Annu. Rev. Phys. Chem.
48
,
601
(
1987
).
11.
Ultrafast Phenomena XI, edited by T. Elsässer, J. Fujimoto, D. A. Wiersma, and W. Zinth (Springer-Verlag, Berlin, 1998).
12.
Femtochemistry Issue, J. Phys. Chem. A 102 (1998).
13.
Bibliography of Matrix Isolation Spectroscopy 1985–1997, edited by D. Ochsner, D. B. Ball, and Z. Kafafi (U.S. Naval Research Laboratory, Springfield, 1998).
14.
V. A.
Apkarian
and
N.
Schwentner
,
Chem. Rev.
99
,
1481
(
1999
).
15.
Excimer Lasers, edited by C. Rhodes (Springer-Verlag, Berlin, 1984).
16.
H. K. J.
Feld
and
V. A.
Apkarian
,
J. Chem. Phys.
93
,
1009
(
1990
).
17.
M. E.
Fajardo
and
V. A.
Apkarian
,
J. Chem. Phys.
85
,
5660
(
1986
).
18.
C.
Bressler
,
W.
Lawrence
, and
N.
Schwentner
,
J. Chem. Phys.
105
,
10
178
(
1996
).
19.
C.
Bressler
,
W. G.
Lawrence
, and
N.
Schwentner
,
J. Chem. Phys.
105
,
1318
(
1996
).
20.
E. D.
Potter
et al.,
Nature (London)
355
,
66
(
1992
).
21.
R.
Zadoyan
and
V. A.
Apkarian
,
Chem. Phys. Lett.
206
,
475
(
1993
).
22.
C.
Dedonder-Lardeux
et al.,
J. Chem. Phys.
104
,
2740
(
1996
).
23.
V. A.
Apkarian
,
J. Chem. Phys.
106
,
5298
(
1997
).
24.
M.
Bargheer
,
P.
Dietrich
, and
N.
Schwentner
,
J. Chem. Phys.
115
,
149
(
2001
).
25.
M.
Dickgießer
and
N.
Schwentner
,
J. Chem. Phys.
113
,
8260
(
2000
).
26.
R.
Alimi
,
R. B.
Gerber
, and
V. A.
Apkarian
,
Phys. Rev. Lett.
66
,
1295
(
1991
).
27.
M. Y.
Niv
,
M.
Bargheer
, and
R. B.
Gerber
,
J. Chem. Phys.
113
,
6660
(
2000
).
28.
R.
Alimi
,
R. B.
Gerber
, and
V. A.
Apkarian
,
J. Chem. Phys.
92
,
3551
(
1990
).
29.
R. B.
Gerber
et al.,
Chem. Phys. Lett.
327
,
76
(
2000
).
30.
A.
Heidenreich
and
J.
Jortner
,
J. Electron Spectrosc. Relat. Phenom.
106
,
187
(
2000
).
31.
A.
Goldberg
and
J.
Jortner
,
J. Chem. Phys.
107
,
8994
(
1997
).
32.
C.
Jeannin
et al.,
Chem. Phys. Lett.
316
,
51
(
2000
).
33.
S.
Jimenez
,
M.
Chergui
,
G.
Rojas-Lorenzo
, and
J.
Rubayo-Soneira
,
J. Chem. Phys.
114
,
5264
(
2001
).
34.
T.
Wilhelm
,
J.
Piel
, and
E.
Riedle
,
Opt. Lett.
22
,
1494
(
1997
).
35.
E.
Riedle
et al.,
Appl. Phys. B: Lasers Opt.
71
,
457
(
2000
).
36.
D.
Kane
and
R.
Trebino
,
IEEE J. Quantum Electron.
29
,
571
(
1993
).
37.
R.
Trebino
and
D. J.
Kane
,
J. Opt. Soc. Am. A
10
,
1101
(
1993
).
38.
M.
Bargheer
,
K.
Donovang
,
P.
Dietrich
, and
N.
Schwentner
,
J. Chem. Phys.
111
,
8556
(
1999
).
39.
A. B.
Alekseyev
,
H.
Liebermann
,
R. J.
Buenker
, and
D. B.
Kokh
,
J. Chem. Phys.
112
,
2274
(
2000
).
40.
J.
Franck
,
Trans. Faraday Soc.
21
,
536
(
1925
).
41.
E.
Condon
,
Phys. Rev.
28
,
1182
(
1926
).
42.
R.
Zadoyan
,
N.
Schwentner
, and
V. A.
Apkarian
,
Chem. Phys.
233
,
353
(
1998
).
43.
R.
Zadoyan
,
Z.
Li
,
C. C.
Martens
, and
V. A.
Apkarian
,
J. Chem. Phys.
101
,
6648
(
1994
).
44.
R.
Zadoyan
,
J.
Almy
, and
V. A.
Apkarian
,
J. Chem. Soc., Faraday Trans.
108
,
255
(
1997
).
45.
R.
Zadoyan
,
M.
Sterling
, and
V. A.
Apkarian
,
J. Chem. Soc., Faraday Trans.
92
,
1821
(
1996
).
46.
H.
Dietz
,
G.
Knopp
,
A.
Materny
, and
V.
Engel
,
Chem. Phys. Lett.
275
,
519
(
1997
).
47.
M. Bargheer, M. Gühr, P. Dietrich, and N. Schwentner, J. Chem. Phys. (in preparation).
48.
K. S.
Kizer
and
V. A.
Apkarian
,
J. Chem. Phys.
103
,
4945
(
1995
).
49.
G.
Chaban
et al.,
J. Phys. Chem. A
105
,
2770
(
2001
).
50.
V.
Aquilanti
,
E.
Luyyatti
,
F.
Pirani
, and
G. G.
Volpi
,
J. Chem. Phys.
89
,
6165
(
1988
).
51.
J. T. H.
Dunning
and
P.
Hay
,
J. Chem. Phys.
69
,
134
(
1978
).
52.
D. L.
Huestis
and
N. E.
Schlotter
,
J. Chem. Phys.
69
,
3100
(
1978
).
53.
W. R.
Wadt
and
P.
Hay
,
J. Chem. Phys.
68
,
3850
(
1978
).
54.
W. R.
Wadt
and
P.
Hay
,
Appl. Phys. Lett.
30
,
573
(
1977
).
55.
J. G.
Caffrey
,
H.
Kunz
, and
N.
Schwentner
,
J. Chem. Phys.
96
,
155
(
1992
).
56.
R.
Sauerbrey
,
Y.
Zhu
,
F. K.
Tittel
, and
J. W. L.
Wilson
,
J. Chem. Phys.
85
,
1299
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.