An implementation of a two-component all-electron (jj/ωω) treatment of both scalar and spin–orbit relativistic effects in the MOLFDIR program suite is presented. Relativity is accounted for by Douglas–Kroll transformed one-electron operators: scalar (spin-free) and so called mean-field spin–orbit terms. The interelectronic interaction is represented by the nonrelativistic Coulomb operator. High-level correlated calculations of properties of several systems (FO, ClO, Cl, O2+,O2, Tl, and TlH) where spin–orbit effects play a dominant role are presented and compared with other data. Agreement with Dirac–Coulomb(–Gaunt) reference values is in general very good.

1.
P. Pyykkö, in The Effects of Relativity in Atoms, Molecules, and Solid State, edited by S. Wilson, I. P. Grant, and B. L. Gyorffy (Plenum, New York, 1991), p. 1.
2.
J. Almlöf and O. Gropen, in Reviews in Computational Chemistry, edited by K. B. Lipkovitz, and D. B. Boyd (VCH, New York, 1996), Vol. 8.
3.
Relativistic and Correlation Effects in Molecules and Solids, edited by G. L. Malli (Plenum, New York, 1993).
4.
K. Balasubramanian, Relativistic Effects in Chemistry (Wiley, New York, 1997).
5.
B. A. Hess and C. M. Marian, in Computational Molecular Spectroscopy, edited by P. Jensen and P. R. Bunker (Wiley, Sussex, 2000), p. 169.
6.
J.
Sucher
,
Phys. Rev. A
22
,
348
(
1980
).
7.
L.
Visscher
,
T.
Saue
,
W. C.
Nieuwpoort
,
K.
Fægri
, Jr.
, and
O.
Gropen
,
J. Chem. Phys.
99
,
6704
(
1993
).
8.
L.
Visscher
,
K. G.
Dyall
, and
T. J.
Lee
,
Int. J. Quantum Chem., Quantum Chem. Symp.
29
,
411
(
1995
).
9.
L.
Visscher
,
T. J.
Lee
, and
K. G.
Dyall
,
J. Chem. Phys.
105
,
8769
(
1996
).
10.
Y.-K.
Han
,
Ch.
Bae
, and
Y. S.
Lee
,
J. Chem. Phys.
110
,
9353
(
1999
).
11.
S.
Faas
,
J. H. van
Lenthe
,
A. C.
Hennum
, and
J. G.
Snijders
,
J. Chem. Phys.
113
,
4052
(
2000
).
12.
L.
Gagliardi
,
B.
Schimmelpfennig
,
L.
Maron
,
U.
Wahlgren
, and
A.
Willets
,
Chem. Phys. Lett.
344
,
207
(
2001
).
13.
B.
Metz
,
M.
Schweizer
,
H.
Stoll
,
M.
Dolg
, and
W.
Liu
,
Theor. Chem. Acc.
104
,
22
(
2000
).
14.
M.
Douglas
and
N. M.
Kroll
,
Ann. Phys. (N.Y.)
82
,
89
(
1974
).
15.
B. A.
Hess
,
Phys. Rev. A
32
,
756
(
1985
).
16.
B. A.
Hess
and
P.
Chandra
,
Phys. Scr.
36
,
412
(
1987
).
17.
R.
Samzow
,
B. A.
Hess
, and
G.
Jensen
,
J. Chem. Phys.
96
,
1227
(
1992
).
18.
M.
Iliaš
,
P.
Furdı́k
, and
M.
Urban
,
J. Phys. Chem. A
102
,
5263
(
1998
).
19.
M.
Iliaš
and
P.
Neogrády
,
Chem. Phys. Lett.
309
,
441
(
1999
).
20.
B. A. Hess, C. M. Marian, and S. D. Peyerimhoff, Modern Electronic Structure Theory, Part I, edited by D. R. Yarkony (World Scientific, Signapore, 1995), p. 152.
21.
F.
Rakowitz
and
C. M.
Marian
,
Chem. Phys. Lett.
223
,
105
(
1997
).
22.
M.
Sjøvoll
,
O.
Gropen
, and
J.
Olsen
,
Theor. Chem. Acc.
97
,
301
(
1997
).
23.
M.
Sjøvoll
,
H.
Fagerli
,
O.
Gropen
,
J.
Almlöf
,
J.
Olsen
, and
T. U.
Helgaker
,
Int. J. Quantum Chem.
68
,
53
(
1998
).
24.
V.
Vallet
,
L.
Maron
,
C.
Teichteil
, and
J.-P.
Flament
,
J. Chem. Phys.
113
,
1391
(
2000
).
25.
T.
Fleig
,
J.
Olsen
, and
C. M.
Marian
,
J. Chem. Phys.
114
,
4775
(
2001
).
26.
U.
Wahlgren
,
M.
Sjøvoll
,
H.
Fagerli
,
O.
Gropen
, and
B.
Schimmelpfennig
,
Theor. Chem. Acc.
97
,
324
(
1997
).
27.
B. A.
Hess
,
C. M.
Marian
,
U.
Wahlgren
, and
O.
Gropen
,
Chem. Phys. Lett.
251
,
365
(
1996
).
28.
H.
Fagerli
,
B.
Schimmelpfennig
,
O.
Gropen
, and
U.
Wahlgren
,
J. Mol. Struct.: THEOCHEM
451
,
227
(
1998
).
29.
O.
Christiansen
,
J.
Gauss
, and
B.
Schimmelpfennig
,
Phys. Chem. Chem. Phys.
2
,
965
(
2000
).
30.
F.
Rakowitz
,
C. M.
Marian
, and
B.
Schimmelpfennig
,
Phys. Chem. Chem. Phys.
2
,
2481
(
2000
).
31.
A. Tinkham, Group Theory and Quantum Mechanics (McGraw–Hill, New York, 1964).
32.
T. Inui, Y. Tanabe, and Y. Ondera, Group Theory and Its Applications in Physics (Springer-Verlag, Tokyo, 1990).
33.
L.
Visscher
,
Chem. Phys. Lett.
253
,
20
(
1996
).
34.
P.
Hafner
and
W. H. E.
Schwarz
,
Chem. Phys. Lett.
65
,
537
(
1979
).
35.
P.
Hafner
,
J. Phys. B
13
,
3297
(
1980
).
36.
S. Y.
Lee
and
Y. S.
Lee
,
J. Comput. Chem.
13
,
595
(
1992
).
37.
N. S.
Mosyagin
,
E.
Eliav
,
A. V.
Titov
, and
U.
Kaldor
,
J. Phys. B
33
,
667
(
2000
).
38.
L.
Visscher
,
O.
Visser
,
P. J. C.
Aerts
,
H.
Merenga
, and
W. C.
Nieuwpoort
,
Comput. Phys. Commun.
81
,
120
(
1994
).
39.
K. Andersson, M. R. A. Blomberg, M. Fűlscher, G. Karlström, R. Lindh, P.-A. Malmqvist, P. Neogrády, J. Olsen, B. O. Roos, A. J. Sadlej, M. Schűtz, M. L. Seijo, L. Serrano-Andres, P. E. M. Siegbahn, and P.-O. Widmark, MOLCAS System of Quantum Chemistry Programs, Release 4 (Department of Theoretical Chemistry, University of Lund, Sweden, 1997).
40.
B. Schimmelpfennig, program AMFI, Stockholm, Sweden, 1996; see also Ref. 27,28,29,30 31.
41.
H.-S.
Lee
,
Y. K.
Han
,
M. Ch.
Kim
,
Ch.
Bae
, and
Y. S.
Lee
,
Chem. Phys. Lett.
293
,
97
(
1998
).
42.
M. Ch.
Kim
,
H.-S.
Lee
,
Y. S.
Lee
, and
S. Y.
Lee
,
J. Chem. Phys.
109
,
9384
(
1998
).
43.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Theor. Chim. Acta
94
,
39
(
1996
).
44.
K. G.
Dyall
,
Theor. Chem. Acc.
99
,
366
(
1998
).
45.
J.
Micanko
,
S.
Biskupič
,
M.
Bittererová
, and
V.
Kvasnička
,
Czech. J. Phys.
49
,
1137
(
1999
).
46.
K.
Fægri
, Jr.
, and
L.
Visscher
,
Theor. Chem. Acc.
105
,
265
(
2001
).
47.
V.
Kellö
,
A. J.
Sadlej
, and
B. A.
Hess
,
J. Chem. Phys.
105
,
1995
(
1996
).
48.
K. G.
Dyall
,
Int. J. Quantum Chem.
78
,
412
(
2000
).
49.
J. L.
Dunham
,
Phys. Rev.
41
,
713
(
1932
);
J. L.
Dunham
,
Phys. Rev.
41
,
721
(
1932
).
50.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
51.
C. E. Moore, Atomic Energy Levels, Circular of the National Bureau of Standards (NBS, Washington, D.C., 1949), Vol. III.
52.
F.
Rakowitz
and
C. M.
Marian
,
Chem. Phys. Lett.
257
,
105
(
1996
).
53.
E.
Eliav
,
U.
Kaldor
,
Y.
Ishikawa
,
M.
Seth
, and
P.
Pyykkö
,
Phys. Rev. A
53
,
3926
(
1996
).
54.
L.
Visscher
and
T.
Saue
,
J. Chem. Phys.
113
,
3996
(
2000
).
55.
H. Fagerli and T. Saue (private communication).
56.
M.
Seth
,
P.
Schwerdtfeger
, and
K.
Fægri
, Jr.
,
J. Chem. Phys.
111
,
6422
(
1999
).
57.
Y.-K.
Han
,
Ch.
Bae
,
S.-K.
Son
, and
Y. S.
Lee
,
J. Chem. Phys.
112
,
2684
(
2000
).
58.
T.
Nakajima
and
K.
Hirao
,
Chem. Phys. Lett.
302
,
383
(
1999
).
59.
M.
Barysz
,
J. Chem. Phys.
113
,
4003
(
2000
).
60.
M.
Barysz
,
A. J.
Sadlej
, and
J. G.
Snijders
,
Int. J. Quantum Chem.
65
,
225
(
1997
).
61.
T.
Fleig
,
C. M.
Marian
, and
J.
Olsen
,
Theor. Chem. Acc.
97
,
125
(
1997
).
62.
U. Kaldor, in Recent Advances in Coupled Cluster Methods, edited by R. J. Bartlett (World Scientific, Singapore, 1997), p. 125.
63.
E.
Eliav
,
U.
Kaldor
, and
B. A.
Hess
,
J. Chem. Phys.
108
,
3409
(
1998
).
64.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
65.
P. D.
Hammer
,
A.
Sinha
,
J. B.
Burkholder
, and
C. J.
Howard
,
J. Mol. Spectrosc.
129
,
99
(
1988
).
66.
F. Rakowitz, Diploma thesis, University of Bonn, Bonn, Germany, 1995.
67.
C. E. Moore, Ionization Potentials and Ionization Limits Derived From the Analyses of Optical Spectra, Natl. Stand. Ref. Data Ser., U.S. Natl. Bur. Stand., 1970.
68.
R. D.
Urban
,
A. H.
Bahnmaier
,
U.
Magg
, and
H.
Jones
,
Chem. Phys. Lett.
158
,
443
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.