The superexchange mechanism of electron-transfer reactions is studied for time-dependent donor–bridge–acceptor systems. It is shown that superexchange may not be a relevant mechanism in a situation where donor and acceptor states are off-resonant to the bridge with an energy gap much greater than KBT. The competing mechanism in this case involves coherent through-bridge transfer. Methods for estimating its contribution to the electron-transfer probability are presented. It is also shown that the superexchange component of the electron-transfer probability can generally be described by a time-dependent two-state effective Hamiltonian. The off-diagonal element of this Hamiltonian is a generalized superexchange matrix element applicable to time-dependent donor–bridge–acceptor systems. It is nonperturbative and should be used to compute time-dependent superexchange pathways. The derivation of the effective Hamiltonian also applies to time-dependent superexchange systems with multiple donor (acceptor) states. All calculations are carried out on azurin and they involve molecular dynamics simulations coupled to electronic-structure/dynamics calculations using the complete neglect of differential overlap method.

1.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1987
).
2.
M. D.
Newton
,
Chem. Rev.
91
,
767
(
1991
).
3.
Electron Transfer—from Isolated Molecules to Biomolecules, edited by J. Jortner and M. Bixon, Advances in Chemical Physics 106, 107 (1999).
4.
A. M. Kuznetsov and H. Ulstrup, Electron Transfer in Chemistry and Biology (Wiley, Chichester, 1988).
5.
M. D. Newton, in Electron Transfer in Chemistry, edited by V. Balzani, P. Piotrowiak, and M. A. J. Rodgers (Wiley-VCH, Weinheim, 2001), Vol. 1, pp. 3–63.
6.
D. N.
Beratan
,
J. N.
Betts
, and
J. N.
Onuchic
,
Science
252
,
1285
(
1991
).
7.
S. S. Skourtis and D. N. Beratan, in Advances in Chemical Physics, edited by J. Jortner and M. Bixon, 106, 377 (1999).
8.
J. R.
Reimers
and
N. S.
Hush
,
J. Phys. Chem.
95
,
9773
(
1991
).
9.
R. J.
Cave
and
M. D.
Newton
,
J. Chem. Phys.
106
,
9213
(
1997
).
10.
D. N.
Beratan
and
J. J.
Hopfield
,
J. Chem. Phys.
81
,
5753
(
1984
).
11.
J. N.
Onuchic
and
A. A. S.
Da Gamma
,
Theor. Chim. Acta
69
,
89
(
1986
);
J. N.
Onuchic
and
A. A. S.
Da Gamma
,
J. Am. Chem. Soc.
111
,
1315
(
1989
).
12.
A. M.
Kuznetsov
,
M. D.
Vigdorovich
, and
J.
Ulstrup
,
Chem. Phys.
176
,
539
(
1993
).
13.
J.
Tang
,
J. Chem. Phys.
98
,
6263
(
1993
).
14.
I. A.
Goychuk
,
E. G.
Petrov
, and
V.
May
,
J. Chem. Phys.
103
,
4937
(
1995
).
15.
J.
Wolfgang
,
S.
Risser
,
S.
Priyadarshy
, and
D. N.
Beratan
,
J. Phys. Chem. B
101
,
2986
(
1997
).
16.
E. S.
Medvedev
and
A. A.
Stuchebrukhov
,
J. Chem. Phys.
107
,
3821
(
1997
).
17.
V. S.
Pande
and
J. N.
Onuchic
,
Phys. Rev. Lett.
78
,
146
(
1997
).
18.
L. W.
Ungar
,
M. D.
Newton
, and
G. A.
Voth
,
J. Phys. Chem. B
103
,
7367
(
1999
).
19.
I. A.
Balabin
and
J. N.
Onuchic
,
Science
290
,
114
(
2000
).
20.
S. S. Skourtis and D. N. Beratan, in Electron Transfer in Chemistry, edited by V. Balzani, P. Piotrowiak, and M. A. J. Rodgers (Wiley-VCH, Weinheim, 2001), Vol. 1, pp. 109–125.
21.
Q.
Xie
,
G.
Archontis
, and
S. S.
Skourtis
,
Chem. Phys. Lett.
312
,
237
(
1999
).
22.
A.
Okada
,
V.
Chernyak
, and
S.
Mukamel
,
J. Phys. Chem. A
102
,
1241
(
1998
).
23.
J.
Jortner
,
M.
Bixon
,
T.
Langenbacher
, and
M. E.
Michel-Beyerle
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
51
(
1998
).
24.
D.
Segal
,
A.
Nitzan
,
W. B.
Davis
,
M. R.
Wasielewski
, and
M. A.
Ratner
,
J. Phys. Chem. B
104
,
3817
(
2000
).
25.
Molecular Electronics, edited by J. Jortner and M. Ratner (Blackwell Scientific, Oxford, 1997).
26.
H.
Sumi
and
T.
Kakitani
,
Chem. Phys. Lett.
252
,
85
(
1996
).
27.
E. P.
Friis
,
Y. I.
Kharkhats
,
A. M.
Kuznetsov
, and
J.
Ulstrup
,
J. Phys. Chem. A
102
,
7851
(
1998
).
28.
U.
Peskin
,
A.
Edlund
,
L.
Bar-On
,
M.
Galperin
, and
A.
Nitzan
,
J. Chem. Phys.
111
,
7558
(
1999
).
29.
E. N.
Baker
,
J. Mol. Biol.
203
,
1071
(
1988
).
30.
H.
Frauenfelder
and
P. G.
Wolynes
,
Science
229
,
337
(
1985
).
31.
G. A.
Jones
,
B. K.
Carpenter
, and
M. N.
Paddon-Row
,
J. Am. Chem. Soc.
120
,
5499
(
1998
).
32.
J. J.
Regan
,
A. J.
Di Bilio
,
R.
Langen
,
L. K.
Skov
,
J. R.
Winkler
,
H. B.
Gray
, and
J. N.
Onuchic
,
Chem. Biol.
2
,
489
(
1995
).
33.
A.
Mackerell
,
D.
Bashford
,
M.
Bellott
et al.,
J. Phys. Chem. B
102
,
3586
(
1998
).
34.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
35.
N. F.
Scherer
,
L. W.
Ungar
, and
G. A.
Voth
.
Biophys. J.
72
,
5
(
1997
).
36.
R.
Stote
,
D.
States
, and
M.
Karplus
.
J. Chim. Phys. (Paris)
88
,
2419
(
1991
).
37.
C.
Brooks
and
M.
Karplus
,
J. Mol. Biol.
208
,
159
(
1989
).
38.
C.
Brooks
and
M.
Karplus
,
J. Chem. Phys.
79
,
6312
(
1984
).
39.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
40.
J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory (McGraw-Hill, New York, 1970).
41.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).
42.
F. Weinhold, QCPE Program No. 408.
43.
M.-H Whangbo, M. Evain, T. Hughbanks, M. Kertesz, S. Wijeyesekera, C. Wilker, C. Zheng, and R. Hoffman, QCPE Program No. 571.
44.
S. S.
Skourtis
and
J. N.
Onuchic
,
Chem. Phys. Lett.
209
,
171
(
1993
).
45.
S. S.
Skourtis
,
D. N.
Beratan
, and
J. N.
Onuchic
,
Chem. Phys.
176
,
501
(
1993
).
46.
S. S.
Skourtis
and
S.
Mukamel
,
Chem. Phys.
197
,
367
(
1995
).
47.
Alternatively, ΨD−(t) and ΨA−(t) could be used in Eqs. (22), (23).
48.
〈 〉 denotes a time average over an interval of 1 ps unless the time interval is specified by 〈 〉T.
49.
Ignoring the second term in Eq. (38) gives iℏ(d/dt)Cploc≃[ΨprHrreig−iℏ(KlocΨ)pr]Creig. As discussed in Sec. II, in the context of the CNDO approximation the matrix Kloc is not included in the computations involving the N-state TDSE in the localized basis [Eq. (16)]. Therefore, the term (KlocΨ)pr in the equation above should be ignored, giving Eq. (48). In general Kloc has zero diagonal elements and its off-diagonal elements 〈φi|dtφj decay very fast with distance (since they depend on the overlap between localized states). Therefore, the effect of Kloc on the electron transfer dynamics is negligible (Ref. 21).
50.
Ψpr(t)=(Ψp+(t),Ψp−(t)), where Ψp+=(ΨA+(t)ΨD+(t)) and Ψp−=(ΨA−(t)ΨD−(t)). Equations (41) and (42) imply that |Ψp+(t)|2≃|Ψp−(t)|2≃1 and Ψp+T(t)Ψp−(t)≃0. Therefore, Ψpr(t)≃Ψprun(t)=(Ψp+orth(t),Ψp−orth(t)), where Ψp+orth(t) and Ψp−orth(t) are orthonormal forms of Ψp+(t) and Ψp−(t).
51.
In a situation where n localized donor/acceptor states lie in the bridge HOMO–LUMO gap (N>n>2), there will be an equal number of gap eigenstates. If p denotes the subspace of the n donor/acceptor states and r the subspace of the n gap eigenstates, the derivation of Sec. IV leads to an effective n-state TDSE and the necessary conditions for this reduction are n-state generalizations of the conditions discussed in Sec. IV.
52.
X. J.
Jordanides
,
M. J.
Lang
,
X.
Song
, and
G. R.
Fleming
,
J. Phys. Chem.
103
,
7995
(
1999
).
53.
R. D. Cannon, Electron Transfer Reactions (Butterworths, London, 1980).
54.
However, it is still possible to add the contributions to the probability of different resonance regions if the latter are independent (i.e., the resonance regions are isolated from each other in time).
This content is only available via PDF.
You do not currently have access to this content.