Nonequilibrium molecular dynamics simulations have been carried out on the growth and melting of the Lennard-Jones (100) interface at small undercoolings and superheatings. Two regimes of linear growth rate were discovered: a short-time regime associated with interface relaxation and a long-time regime associated with the macroscopic limit of growth and melting. It was shown that, if system sizes or equilibration times are taken too small, one will find only the initial regime. On the basis of our very accurate results on the macroscopic growth rates close to equilibrium, the possibility of a discontinuity in the temperature dependence of growth and melting rates at the melting point was ruled out.

1.
J. Q.
Broughton
,
G. H.
Gilmer
, and
K. A.
Jackson
,
Phys. Rev. Lett.
49
,
1496
(
1982
).
2.
K. A.
Jackson
and
B.
Chalmers
,
Can. J. Phys.
34
,
473
(
1956
).
3.
E.
Burke
,
J. Q.
Broughton
, and
G. H.
Gilmer
,
J. Chem. Phys.
89
,
1030
(
1988
).
4.
J. Y.
Tsao
,
M. J.
Aziz
,
M. O.
Thompson
, and
P. S.
Peercy
,
Phys. Rev. Lett.
56
,
2712
(
1986
).
5.
M. D.
Kluge
and
J. R.
Ray
,
Phys. Rev. B
39
,
1738
(
1989
).
6.
M.
Iwamatsu
and
K.
Horii
,
Phys. Lett. A
214
,
71
(
1996
).
7.
G. Tammann, Aggregatzustände (Leopold Voss, Leipzig, 1923), Chap. 9.
8.
D. R.
Uhlmann
,
J. F.
Hays
, and
D.
Turnbull
,
Phys. Chem. Glasses
8
,
1
(
1967
).
9.
C. J.
Tymczak
and
J. R.
Ray
,
Phys. Rev. Lett.
64
,
1278
(
1990
).
10.
C. J.
Tymczak
and
J. R.
Ray
,
J. Chem. Phys.
92
,
7520
(
1990
).
11.
Y. C.
Shen
and
D. W.
Oxtoby
,
J. Chem. Phys.
104
,
4233
(
1996
).
12.
A.
Williams
,
R.
Moss
, and
P.
Harrowell
,
J. Chem. Phys.
99
,
3998
(
1993
).
13.
R.
Moss
and
P.
Harrowell
,
J. Chem. Phys.
100
,
7630
(
1994
).
14.
P. M.
Richards
,
Phys. Rev. B
38
,
2727
(
1988
).
15.
D. W.
Oxtoby
and
P. R.
Harrowell
,
J. Chem. Phys.
96
,
3834
(
1992
).
16.
J. H. R.
Clarke
,
W.
Smith
, and
L. V.
Woodcock
,
J. Chem. Phys.
84
,
2290
(
1986
).
17.
H. L.
Tepper
and
W. J.
Briels
,
J. Cryst. Growth
230
,
270
(
2001
).
18.
H. E. A.
Huitema
,
M. J.
Vlot
, and
J. P.
van der Eerden
,
J. Chem. Phys.
111
,
4714
(
1999
).
19.
W. J.
Briels
and
H. L.
Tepper
,
Phys. Rev. Lett.
79
,
5074
(
1997
).
20.
B. J.
Jesson
and
P. A.
Madden
,
J. Chem. Phys.
113
,
5935
(
2000
).
21.
T.
Motooka
,
K.
Nisihira
,
S.
Munetoh
,
K.
Moriguchi
, and
A.
Shintani
,
Phys. Rev. B
61
,
8537
(
2000
).
22.
J. A.
Hayward
and
A. D. J.
Haymet
,
J. Chem. Phys.
114
,
3713
(
2001
).
23.
C. S.
Liu
,
J.
Xia
,
Z. G.
Zhu
, and
D. Y.
Sun
,
J. Chem. Phys.
114
,
7506
(
2001
).
24.
S.
Nosé
,
J. Chem. Phys.
81
,
511
(
1984
).
25.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
26.
S.
Toxvaerd
,
Mol. Phys.
72
,
159
(
1991
).
27.
S.
Toxvaerd
,
Phys. Rev. E
47
,
343
(
1993
).
28.
V. G.
Baidakov
,
G. G.
Chernykh
, and
S. P.
Protsenko
,
Chem. Phys. Lett.
321
,
315
(
2000
).
29.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
30.
M. A. van der Hoef
,
J. Chem. Phys.
113
,
8142
(
2000
).
31.
J. P.
Hoogenboom
,
H. L.
Tepper
,
N. F. A.
van der Vegt
, and
W. J.
Briels
,
J. Chem. Phys.
113
,
6875
(
2000
).
32.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).
This content is only available via PDF.
You do not currently have access to this content.