Detailed microscopic image of polymer crystallization from the melt is searched for by molecular dynamics simulation. In order to accelerate crystallization, a simple model of polymethylene chain is devised; the polymer chain is made of 100 beads (CH2 united atoms) connected by harmonic springs and the lowest energy conformation is a linear stretched sequence of the beads with a slight bending stiffness being imposed. A system of polymer melt, made of 80 chains of C100, is placed between two parallel substrates that represent the growth surface of the lamellae. Initial melt at 600 K is rapidly cooled down to various crystallization temperatures, and the molecular process of crystallization is investigated. We first notice a marked layer structure in the melt near the substrate. We find that the layer structure leads to growing lamellae when cooled below the melting point. It is shown that the growing lamellae have a definite tapered shape and show thickening growth along the chain axis as well as normal growth. The molecular trajectory of the crystallizing chain at the growth front is demonstrated to be a sequence of processes of local adsorption to the growth front followed by stretching along the chain axis and the final fold into crystalline conformation. The chains are found to be very mobile showing active diffusion in the melt and also in the crystal.

1.
B. Wunderlich, Macromolecular Physics (Academic, New York, 1976), Vol. 2.
2.
K.
Armistead
and
G.
Goldbeck-Wood
,
Adv. Polym. Sci.
100
,
219
(
1992
).
3.
J. D.
Hoffman
and
R. L.
Miller
,
Polymer
38
,
3151
(
1997
).
4.
A.
Keller
,
M.
Hikosaka
,
S.
Rastogi
,
A.
Toda
,
P. J.
Barham
, and
G.
Goldbeck-Wood
,
J. Mater. Sci.
29
,
2579
(
1994
).
5.
M.
Imai
,
K.
Mori
,
T.
Mizukami
,
K.
Kaji
, and
T.
Kanaya
,
Polymer
33
,
4451
(
1992
).
6.
K.
Tashiro
,
K.
Imanishi
,
Y.
Izumi
,
M.
Kobayashi
,
K.
Kobayashi
,
M.
Satoh
, and
R.
Stein
,
Macromolecules
28
,
8477
(
1995
).
7.
C. H.
Lee
,
H.
Saito
, and
T.
Inoue
,
Macromolecules
29
,
7034
(
1996
).
8.
K.
Fukao
and
Y.
Miyamoto
,
Phys. Rev. Lett.
79
,
4613
(
1997
).
9.
M.
Iijima
and
G.
Strobl
,
Macromolecules
33
,
5204
(
2000
).
10.
G.
Strobl
,
Eur. Phys. J. E
3
,
165
(
2000
).
11.
S. Z. D.
Cheng
,
C. Y.
Li
, and
L.
Zhu
,
Eur. Phys. J. E
3
,
195
(
2000
).
12.
B.
Lotz
,
Eur. Phys. J. E
3
,
185
(
2000
).
13.
D. M.
Sadler
and
G. M.
Gilmer
,
Polymer
25
,
1446
(
1984
).
14.
J. J.
Point
,
Macromolecules
12
,
770
(
1979
).
15.
M.
Hokosaka
,
Polymer
31
,
458
(
1990
).
16.
T. A.
Kavassalis
and
P. R.
Sandararajan
,
Macromolecules
26
,
4144
(
1993
).
17.
S.
Fujiwara
and
T.
Sato
,
J. Chem. Phys.
107
,
613
(
1997
).
18.
T.
Yamamoto
,
J. Chem. Phys.
107
,
2653
(
1997
).
19.
T.
Yamamoto
,
J. Chem. Phys.
109
,
4638
(
1998
).
20.
C. M.
Chen
and
P. G.
Higgs
,
J. Chem. Phys.
108
,
4305
(
1998
).
21.
C.
Liu
and
M.
Muthukumar
,
J. Chem. Phys.
109
,
2536
(
1998
).
22.
M.
Muthukumar
,
Eur. Phys. J. E
3
,
199
(
2000
).
23.
J. P.
Doye
and
D.
Frenkel
,
J. Chem. Phys.
109
,
10033
(
1998
).
24.
J. P.
Doye
and
D.
Frenkel
,
J. Chem. Phys.
110
,
2692
(
1999
).
25.
See for example, proceedings of recent “Symposium on Semicrystalline Polymer,” Polymer 41, 8751 (2000).
26.
We have found that a modification of the ground state conformation from this linear form to the conventional planar zigzag results in extremely slow relaxation to ordered structures (Refs. 30 and 31).
27.
W. A.
Steele
,
Surf. Sci.
36
,
317
(
1973
).
28.
S.
Granick
,
Science
253
,
1374
(
1991
).
29.
D. Y. Yoon, M. Vacatello, and G. D. Smith, in Monte Carlo and Molecular Dynamics Simulation in Polymer Science, edited by K. Binder (Oxford University Press, Oxford, 1995).
30.
T.
Shimizu
and
T.
Yamamoto
,
J. Chem. Phys.
113
,
3351
(
2000
).
31.
H. Z.
Li
and
T.
Yamamoto
,
J. Chem. Phys.
114
,
5774
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.