It is shown that the direct precursor for the formation of a photochrome in Schiff bases is a “twisted” geometry S1 state of a keto tautomer in which the O⋯N–H hydrogen bond is broken. In photochromic Schiff bases this state is close in energy to the ππ* state of the cis-ketone obtained from the initially optically excited enol species by an ultrafast excited-state proton transfer, in particular, in N-salicylidene-α-methylbenzylamine (SMB), it lies within 1 kcal/mol from the ππ* state of cis-ketone and ∼16 kcal/mol below the initial ππ* state of enol. The excited-state proton transfer in SMB is predicted to take ∼15 fs and to be nearly barrierless. It is also shown that the initial ππ* state of enol can decay via competing route to a twisted geometry nNπ* state of enol with the energy ∼20 kcal/mol below that state.

1.
Photochromism: Molecules and Systems, edited by H. Dürr and H. BouasLaurent (Elsevier, Amsterdam, 1990).
2.
P. J. Martin, in An Introduction to Molecular Electronics, edited by M. C. Petty, M. R. Bryce, and D. Bloor, New York: (Oxford University Press, New York, 1995), p. 112.
3.
P. K.
Sengupta
and
M.
Kasha
,
Chem. Phys. Lett.
68
,
383
(
1979
).
4.
P.
Chou
,
D.
McMorrow
,
T. J.
Aartsma
, and
M.
Kasha
,
J. Phys. Chem.
88
,
4596
(
1984
).
5.
D. A.
Parthenopoulos
,
D.
McMorrow
, and
M.
Kasha
,
J. Phys. Chem.
95
,
2668
(
1991
).
6.
M. Z.
Zgierski
and
A.
Grabowska
,
J. Chem. Phys.
112
,
6329
(
2000
).
7.
M. Z.
Zgierski
and
A.
Grabowska
,
J. Chem. Phys.
113
,
7845
(
2000
).
8.
P. F.
Barbara
,
P. M.
Rentzepis
, and
L. E.
Brus
,
J. Am. Chem. Soc.
102
,
2786
(
1980
).
9.
K.
Kownacki
,
A.
Grabowska
, and
T.
Kaczmarek
,
Chem. Phys. Lett.
210
,
373
(
1993
).
10.
K.
Kownacki
,
A.
Mordziński
,
R. W.
Wilbrandt
, and
A.
Grabowska
,
Chem. Phys. Lett.
227
,
270
(
1994
).
11.
K.
Kownacki
and
A.
Grabowska
,
Acta Phys. Pol. A
88
,
1081
(
1995
).
12.
S.
Mitra
and
N.
Tamai
,
Chem. Phys. Lett.
282
,
391
(
1998
).
13.
H.
Lee
and
T.
Kitagawa
,
Bull. Chem. Soc. Jpn.
59
,
2897
(
1986
).
14.
Special Issue on Photochromism, Chem. Rev. 100, 5 (2000).
15.
S.
Kawamura
,
T.
Tsutui
,
S.
Saito
,
Y.
Murao
, and
K.
Kina
,
J. Am. Chem. Soc.
110
,
509
(
1988
).
16.
T.
Imac
and
K.
Aoki
,
Langmuir
14
,
1196
(
1998
).
17.
J.
Zhao
,
B.
Zhao
,
J.
Liu
,
T.
Li
, and
W.
Xu
,
J. Chem. Res., Synop.
2000
,
416
.
18.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.9, Gaussian Inc., Pittsburgh, PA (1998).
19.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
);
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
20.
J. B.
Foresman
,
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
J. Phys. Chem.
96
,
135
(
1992
).
21.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
);
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
);
R. E.
Stratman
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
109
,
8218
(
1998
).
22.
W.
Siebrand
,
Z.
Smedarchina
,
M. Z.
Zgierski
, and
A.
Fernández-Ramos
,
Int. Rev. Phys. Chem.
18
,
5
(
1999
).
23.
Z. Smedarchina, A. Fernández-Ramos, M. Z. Zgierski, and W. Siebrand, DOIT1.2, a computer program to calculate hydrogen tunneling rate constants and splittings; National Research Council of Canada, http://www.sims.nrc.ca/sims/software/doit/index.html
24.
F.
Zerbetto
and
M. Z.
Zgierski
,
J. Chem. Phys.
93
,
1235
(
1990
).
25.
A.
Fernández-Ramos
,
Zorka
Smedarchina
,
W.
Siebrand
, and
M. Z.
Zgierski
,
J. Chem. Phys.
114
,
7518
(
2001
).
26.
M.
Irie
,
S.
Kobatake
, and
M.
Horichi
,
Science
291
,
1769
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.