The spin-rotation coupling constant γ has been determined to be −0.15(6)⋅10−3cm−1 for vibrational levels v=0, 1, and 2 of the X 2Σ+ state of LiAr7 by means of an analysis of the high-resolution absorption spectrum due to the A←X transition in the 670–677 nm region. All rovibrational levels of the X 2Σ+ state have been observed, and improved values have been obtained for the spectroscopic parameters of vibration and rotation. In addition, the dispersed fluorescence A→X has been recorded by populating selectively a particular rovibrational level of the A state. Using all experimental data, an improved X 2Σ+ interaction potential has been determined for LiAr7, which is provided in the form of an analytical Hartree-Fock-Dispersion function.

1.
R.
Brühl
and
D.
Zimmermann
,
J. Chem. Phys.
114
,
3035
(
2001
).
2.
R.
Brühl
and
D.
Zimmermann
,
Chem. Phys. Lett.
233
,
455
(
1995
).
3.
R.
Ahlrichs
,
R.
Penco
, and
G.
Scoles
,
Chem. Phys.
19
,
119
(
1970
).
4.
F.
Bokelmann
and
D.
Zimmermann
,
J. Chem. Phys.
104
,
923
(
1996
).
5.
P.
Baumann
,
D.
Zimmermann
, and
R.
Brühl
,
J. Mol. Spectrosc.
155
,
277
(
1992
).
6.
J.
Tellinghuisen
,
Adv. Chem. Phys.
60
,
299
(
1985
).
7.
R. R.
Freeman
,
E. M.
Mattison
,
D. E.
Pritchard
, and
D.
Kleppner
,
J. Chem. Phys.
64
,
1194
(
1976
).
8.
W. E.
Cooke
and
R. R.
Freeman
,
Phys. Rev. A
16
,
2211
(
1977
).
9.
Z. Wu and W. Happer, in Proceedings of the Workshop on Polarized Targets in Storage Rings, edited by R. J. Holt (Argonne National Laboratory, 1984) p. 289.
10.
M. A.
Bouchiat
,
J.
Brossel
, and
L. C.
Pottier
,
J. Chem. Phys.
56
,
3703
(
1972
).
11.
G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, Princeton, NJ, 1950) vol. 1.
12.
J. M.
Brown
et al.,
J. Mol. Spectrosc.
45
,
46
(
1973
).
13.
Z.
Wu
,
T. G.
Walker
, and
W.
Happer
,
Phys. Rev. Lett.
54
,
1921
(
1985
).
14.
G.
Douketis
,
G.
Scoles
,
S.
Marchetti
,
M.
Zen
, and
A. J.
Thakkar
,
J. Chem. Phys.
76
,
3057
(
1982
).
15.
R.
Brühl
,
I.
Kapetanakis
, and
D.
Zimmermann
,
J. Chem. Phys.
94
,
5865
(
1991
).
16.
G.
Gerber
,
R.
Möller
, and
H.
Schneider
,
J. Chem. Phys.
81
,
1538
(
1984
).
17.
S. J.
Park
,
Y. S.
Lee
, and
G.-H.
Jeung
,
Chem. Phys. Lett.
277
,
208
(
1997
).
18.
J. M.
Standard
and
P. R.
Certain
,
J. Chem. Phys.
83
,
3002
(
1985
).
19.
G.
Yorck
,
R.
Scheps
, and
A.
Gallagher
,
J. Chem. Phys.
63
,
1052
(
1975
).
20.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
80
,
3726
(
1984
).
21.
A. J.
Thakkar
,
J. Chem. Phys.
62
,
1693
(
1975
).
22.
R.
Klingbeil
,
J. Chem. Phys.
59
,
797
(
1972
).
23.
G. B.
Ury
and
L.
Wharton
,
J. Chem. Phys.
56
,
5832
(
1972
).
24.
Ch. Kerner, Dissertation Universität Kaiserslautern, Germany, 1995.
25.
D.
Cvetko
,
A.
Lausi
,
A.
Morgante
,
F.
Tommasini
,
P.
Cortona
, and
M. G.
Dondi
,
J. Chem. Phys.
100
,
2052
(
1993
).
26.
S. H.
Patil
,
J. Chem. Phys.
94
,
8089
(
1991
).
27.
E.
Czuchaj
and
J.
Sienkievicz
,
Z. Naturforsch. A
34
,
694
(
1979
).
28.
J. P.
Gu
,
G.
Hirsch
,
R. J.
Buenker
,
I. D.
Petsalakis
,
G.
Theodorakoupolos
, and
M. B.
Huang
,
Chem. Phys. Lett.
230
,
473
(
1994
).
29.
J.
Sadly
and
W. D.
Edwards
,
Int. J. Quantum Chem.
53
,
607
(
1995
).
30.
E. Czuchaj, Gdansk (Poland) (private communication, 1999).
This content is only available via PDF.
You do not currently have access to this content.