Recent experiments on mixtures of rodlike and platelike colloidal particles have uncovered the phase behavior of strongly asymmetrical rod-plate mixtures. In these mixtures, in which the excluded volume of the platelets is much larger than that of the rods, an extended isotropic (I)–plate-rich nematic (N)–rod-rich nematic (N+) triphasic equilibrium was found. In this paper, we present a theoretical underpinning for the observed phase behavior starting from the Onsager theory in which higher virial terms are incorporated by rescaling the second virial term using an extension of the Carnahan–Starling excess free energy for hard spheres (Parsons’ method). We find good qualitative agreement between our results and the low concentration part of the experimental phase diagram.

1.
H.
Zocher
,
Z. Anorg. Allg. Chem.
147
,
91
(
1925
).
2.
I.
Langmuir
,
J. Chem. Phys.
6
,
873
(
1938
).
3.
J. D.
Bernal
and
I.
Fankuchen
,
J. Gen. Physiol.
25
,
111
(
1941
).
4.
M. P. B.
van Bruggen
,
F. M.
van der Kooij
, and
H. N. W.
Lekkerkerker
,
J. Phys.: Condens. Matter
8
,
9451
(
1996
).
5.
F. M.
van der Kooij
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem. B
102
,
7829
(
1998
).
6.
D.
Frenkel
and
R.
Eppenga
,
Phys. Rev. Lett.
49
,
1089
(
1982
).
7.
L.
Onsager
,
Ann. N.Y. Acad. Sci.
51
,
627
(
1949
).
8.
R.
Alben
,
J. Chem. Phys.
59
,
4299
(
1973
).
9.
A.
Saupe
,
P.
Boonbrahm
, and
L. J.
Yu
,
J. Chim. Phys.
80
,
7
(
1983
).
10.
Y.
Rabin
,
W. E. M.
Mullen
, and
W. M.
Gelbart
,
Mol. Cryst. Liq. Cryst.
89
,
67
(
1982
).
11.
A.
Chrzanowska
,
Phys. Rev. E
58
,
3229
(
1998
).
12.
A.
Stroobants
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem.
88
,
3669
(
1984
).
13.
P. J.
Camp
and
M. P.
Allen
,
Physica A
229
,
410
(
1996
).
14.
R.
van Roij
and
B.
Mulder
,
J. Phys. II
4
,
1763
(
1994
).
15.
P. J.
Camp
,
M. P.
Allen
,
P. G.
Bolhuis
, and
D.
Frenkel
,
J. Chem. Phys.
106
,
9270
(
1997
).
16.
F. M.
van der Kooij
and
H. N. W.
Lekkerkerker
,
Phys. Rev. Lett.
84
,
781
(
2000
).
17.
F. M.
van der Kooij
and
H. N. W.
Lekkerkerker
,
Langmuir
16
,
10
144
(
2000
).
18.
J. A. C.
Veerman
and
D.
Frenkel
,
Phys. Rev. A
45
,
5632
(
1992
).
19.
D.
Frenkel
,
J. Phys. Chem.
91
,
4912
(
1987
).
20.
J. D.
Parsons
,
Phys. Rev. A
19
,
1225
(
1979
).
21.
S. D.
Lee
,
J. Chem. Phys.
89
,
7036
(
1989
).
22.
D.
Frenkel
,
H. N. W.
Lekkerkerker
, and
A.
Stroobants
,
Nature (London)
332
,
822
(
1988
).
23.
T.
Odijk
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem.
89
,
2090
(
1985
).
24.
R.
van Roij
and
B.
Mulder
,
J. Chem. Phys.
105
,
11
237
(
1996
).
25.
G. J.
Vroege
and
H. N. W.
Lekkerkerker
,
J. Phys. Chem. B
97
,
3601
(
1993
).
26.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).
27.
P.
Bartlett
,
J. Phys.: Condens. Matter
2
,
4979
(
1990
).
28.
H. N. W.
Lekkerkerker
,
P.
Coulon
,
R.
van der Hagen
, and
R.
Deblieck
,
J. Chem. Phys.
80
,
3427
(
1984
).
29.
The higher order terms denoted by … involve elliptic integrals of the form 0 dφR4cos2 φ/1−(1−R2)cos2 φ and 0 dφR4cos2 φ/[1−(1−R2)cos2 φ]3/2 which can be rewritten in terms of complete elliptic integrals of the second and third kind (Ref. 30).
30.
P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists (Springer-Verlag, Berlin, 1954).
This content is only available via PDF.
You do not currently have access to this content.