We consider the complexation of highly charged semiflexible polyelectrolytes with oppositely charged macroions. On the basis of scaling arguments we discuss how the resulting complexes depend on the persistence length of the polyelectrolyte, the salt concentration, and the sizes and charges of the chain and the macroions. We study first the case of complexation with a single sphere and calculate the wrapping length of the chain. We then extend our consideration to complexes involving many wrapped spheres and study cooperative effects. The mechanical properties of such a complex under an external deformation are evaluated.

1.
R. D.
Kornberg
and
A.
Klug
,
Sci. Am.
244
,
52
(
1981
);
K.
Luger
,
A. W.
Mäder
,
R. K.
Richmond
,
D. F.
Sargent
, and
T. J.
Richmond
,
Nature (London)
389
,
251
(
1997
);
J.
Widom
,
Annu. Rev. Biophys. Biomol. Struct.
27
,
285
(
1998
).
2.
F.
Ganachaud
,
A.
Elaı̈ssari
,
F.
Pichot
,
A.
Laayoun
, and
P.
Cros
,
Langmuir
13
,
701
(
1997
).
3.
G. B.
Sukhorukov
,
E.
Donath
,
S.
Davis
,
H.
Lichtenfeld
,
F.
Caruso
,
Vi. I.
Popov
, and
H.
Möhwald
,
Polym. Adv. Technol.
9
,
759
(
1998
).
4.
D. W.
McQuigg
,
J. I.
Kaplan
, and
P. L.
Dubin
,
J. Phys. Chem.
96
,
1973
(
1992
), and references therein.
5.
W. H.
Braunlin
,
T. J.
Strick
, and
M. T.
Record
,
Biopolymers
21
,
1301
(
1982
).
6.
D. P.
Mascotti
and
T. M.
Lohmann
,
Proc. Natl. Acad. Sci. U.S.A.
87
,
3142
(
1990
).
7.
J. O.
Rädler
,
I.
Koltover
,
T.
Salditt
, and
C. R.
Safinya
,
Science
275
,
810
(
1997
).
8.
I.
Koltover
,
T.
Salditt
, and
C. R.
Safinya
,
Biophys. J.
77
,
915
(
1999
).
9.
M. T.
Record
,
C. F.
Anderson
, and
T. M.
Lohmann
,
Q. Rev. Biophys.
11
,
103
(
1978
).
10.
S. Y.
Park
,
R. F.
Bruinsma
, and
W. M.
Gelbart
,
Europhys. Lett.
46
,
454
(
1999
).
11.
R.
Bruinsma
,
Eur. Phys. J. B
4
,
75
(
1998
).
12.
D.
Harries
,
S.
May
,
W. M.
Gelbart
, and
A.
Ben-Shaul
,
Biophys. J.
75
,
159
(
1998
).
13.
P.
Sens
and
J.-F.
Joanny
,
Phys. Rev. Lett.
84
,
4862
(
2000
).
14.
N. L.
Marky
and
G. S.
Manning
,
Biopolymers
31
,
1543
(
1991
).
15.
R. A.
Harries
and
J. E.
Hearst
,
J. Chem. Phys.
44
,
2595
(
1966
).
16.
T. T.
Nguyen
,
A. Yu.
Grosberg
, and
B. I.
Shklovskii
,
J. Chem. Phys.
113
,
1110
(
2000
).
17.
T. T.
Nguyen
and
B. I.
Shklovskii
,
J. Chem. Phys.
114
,
5905
(
2001
).
18.
T. T.
Nguyen
and
B. I.
Shklovskii
, cond-mat/0105078.
19.
M.
Rief
,
M.
Gautel
,
F.
Oesterhelt
,
J. M.
Fernandez
, and
H. E.
Gaub
,
Science
276
,
1109
(
1997
).
20.
M. B.
Viani
,
T. E.
Schaffer
,
G. T.
Paloczi
et al.,
Rev. Sci. Instrum.
70
,
4300
(
1999
).
21.
P. A.
Pincus
,
C. J.
Sandroff
, and
T. A.
Witten
,
J. Phys. (Paris)
45
,
725
(
1984
).
22.
T. T.
Nguyen
and
B. I.
Shklovskii
,
Physica A
293
,
324
(
2001
).
23.
F. Oosawa, Polyelectrolytes (Decker, New York, 1971).
24.
G. S.
Manning
,
Q. Rev. Biophys.
11
,
179
(
1978
).
25.
Ω follows from the ratio of ccond, the concentration of counterions within the sheet of condensed counterions, to cbulk, their concentration in the bulk: Ω=ln(ccond/cbulk). The condensed counterions are confined within the Gouy–Chapman distance λchain=1/4πσlB from the charged surface of the chain. σ denotes the number density of surface charges on the chain: σ=1/2πrb. If we assume, for simplicity, that most of the counterions are condensed (highly charged chain) then ccond≅σ/λchain leading to Ω=2 ln(4ξκ−1/r). Similarly, in the sphere case we have σ=Z/4πR2, leading to Ω̃=2 ln(ZlB κ−1/R2). This derivation is consistent with the nonlinear Poisson–Boltzmann approach, cf. Ref. 26, for λchain≪r and λsph≪R.
26.
I.
Rouzina
and
V. A.
Bloomfield
,
J. Phys. Chem.
100
,
4292
(
1996
).
27.
S.
Alexander
,
P. M.
Chaikin
,
P.
Grant
,
G. J.
Morales
,
P.
Pincus
, and
D.
Hone
,
J. Chem. Phys.
80
,
5776
(
1984
).
28.
Due to the presence of the charged rod the value of Zmax is slightly different from that for an isolated sphere. The electrostatic charging energy includes now the sphere-chain interaction term, Eq. (6), i.e., lBZmax2/2R+ln(κR)Zmax leading to a Zmax value of the order (Ω̃−ln(κR))R/lB.
29.
Complexes formed by DNA and histone octamers show overcharging. In these complexes 147 base pairs of DNA (carrying 294 negative charges) are wrapped in a 1 34; left-handed superhelical turn around the octamer containing 220 cationic residues (for details, cf. Ref. 30). This clearly indicates that the histone octamer is overcharged by the wrapped part of the DNA. The notion of overcharging is, however, only reasonable when the charging energy is operative—favoring an isoelectric complex. For high ionic strength where the size of the complex exceeds vastly the screening length of the solution this concept might be less useful. The nucleosome core particle (the histone octamer plus the 147 base pairs of wrapped DNA) is a cylindrical particle with a radius of about 5 nm and a height of 6 nm (Ref. 1). Its size is therefore large compared to the screening length at physiological conditions (roughly 100 mM salt, corresponding to κ−1≈1 nm).
30.
S. N.
Khrapunov
,
A. I.
Dragan
,
A. V.
Sivolob
, and
A. M.
Zagariya
,
Biochim. Biophys. Acta
1351
,
213
(
1997
).
31.
R. R.
Netz
and
J.-F.
Joanny
,
Macromolecules
32
,
9026
(
1999
).
32.
H.
Schiessel
,
J.
Rudnick
,
R.
Bruinsma
, and
W. M.
Gelbart
,
Europhys. Lett.
51
,
237
(
2000
).
33.
O. V.
Borisov
and
A.
Halperin
,
Eur. Phys. J. B
9
,
251
(
1999
).
34.
A. V.
Dobrynin
,
M.
Rubinstein
, and
S. P.
Obukhov
,
Macromolecules
29
,
2974
(
1996
).
35.
Y.
Kantor
and
M.
Kardar
,
Europhys. Lett.
27
,
643
(
1994
).
36.
T.
Soddemann
,
H.
Schiessel
, and
A.
Blumen
,
Phys. Rev. E
57
,
2081
(
1998
).
37.
M. N.
Tamashiro
and
H.
Schiessel
,
Macromolecules
33
,
5263
(
2000
).
38.
T.
Vilgis
,
A.
Johner
, and
J.-F.
Joanny
,
Eur. Phys. J. E
2
,
289
(
2000
).
39.
A.
Halperin
and
E. B.
Zhulina
,
Europhys. Lett.
15
,
417
(
1991
).
40.
Y.
Cui
and
C.
Bustamante
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
127
(
2000
).
41.
T.
Odijk
,
Macromolecules
13
,
1542
(
1980
).
42.
P.
Haronska
,
T. A.
Vilgis
,
R.
Grottenmüller
, and
M.
Schmidt
,
Macromol. Theory Simul.
7
,
241
(
1998
).
43.
E.
Gurovitch
and
P.
Sens
,
Phys. Rev. Lett.
82
,
339
(
1999
).
44.
E. M.
Mateescu
,
C.
Jeppesen
, and
P.
Pincus
,
Europhys. Lett.
46
,
493
(
1999
).
45.
K. K.
Kunze
and
R. R.
Netz
,
Phys. Rev. Lett.
85
,
4389
(
2000
).
46.
T.
Wallin
and
P.
Linse
,
Langmuir
12
,
305
(
1996
).
47.
T.
Wallin
and
P.
Linse
,
J. Chem. Phys.
109
,
5089
(
1998
).
48.
R. Messina, C. Holm, and K. Kremer (unpublished).
49.
M.
Jonsson
and
P.
Linse
,
J. Chem. Phys.
115
,
3406
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.