To investigate the role of molecular structure in collisions that quench highly vibrationally excited molecules, we have performed state resolved transient infrared absorption studies of energy gain in a number of rotational levels of H2O(000) resulting from collisions of water with vibrationally excited 2-methylpyridine (2-picoline) and 2,6-dimethylpyridine (2,6-lutidine) in a low-pressure gas-phase environment at 298 K. Vibrationally excited methylpyridines were prepared with ∼38 500 cm−1 of internal energy using 266 nm ultraviolet excitation to an S1 electronic state followed by rapid radiationless decay to the S0 electronic state. Collisions that populate rotationally excited states of H2O(000) were investigated with infrared absorption by monitoring the appearance of individual rotational states of H2O(000) with energies between 1000 and 2000 cm−1. Rotational state distributions for recoiling water molecules were characterized by Boltzmann temperatures of Trot=590±90 K for quenching of hot picoline and Trot=490±80 K for lutidine quenching. Doppler-broadened transient absorption line profiles show that the scattered H2O(000) molecules have laboratory-frame translational energy distributions corresponding to Ttrans≈600 K for deactivation of picoline and Ttrans≈590 K for lutidine. Energy transfer rate constant measurements indicate that rotational excitation of H2O(000) with Evib>1000 cm−1 occurs for one in 31 picoline/water collisions and one in 17 lutidine/water collisions. Comparison with earlier quenching studies on pyrazine [M. Fraelich, M. S. Elioff, and A. S. Mullin, J. Phys. Chem. 102, 9761 (1998)] and pyridine [M. S. Elioff, M. Fraelich, R. L. Sansom, and A. S. Mullin, J. Chem. Phys. 111, 3517 (1999)] indicate that, for the same initial internal energy in the hot donor, the extent of rotational excitation in water is diminished as the number of vibrational modes in the donor increases. The energy transfer probability for this pathway exhibits opposite behavior, with the larger donor molecules being more likely to excite the high energy rotations in water. These results are interpreted using a statistical description of the high energy donors and highlight the role of low frequency vibrational modes in the vibrationally hot donor molecules. A Fermi’s golden rule approach is successful at explaining differences in the observed scattering dynamics for the various donor molecules.

1.
D. J.
Krajnovich
,
C. S.
Parmenter
, and
D. L.
Catlett
,
Chem. Rev.
87
,
237
(
1987
).
2.
I.
Oref
and
D. C.
Tardy
,
Chem. Rev.
90
,
1407
(
1990
).
3.
R. E.
Weston
and
G. W.
Flynn
,
Annu. Rev. Phys. Chem.
43
,
559
(
1992
).
4.
A. S. Mullin and G. C. Schatz, in Highly Excited Molecules: Relaxation, Reaction and Structure, edited by A. S. Mullin and G. C. Schatz (ACS Books, Washington, DC, 1997), Vol. 687, pp. 330.
5.
G. W.
Flynn
,
C. S.
Parmenter
, and
A. M.
Wodtke
,
J. Phys. Chem.
100
,
12817
(
1996
).
6.
D. J.
Nesbitt
and
R. W.
Field
,
J. Phys. Chem.
100
,
12735
(
1996
).
7.
A. S.
Mullin
,
J.
Park
,
J. Z.
Chou
,
G. W.
Flynn
, and
R. E.
Weston
,
Chem. Phys.
175
,
53
(
1993
).
8.
A. S.
Mullin
,
C. A.
Michaels
, and
G. W.
Flynn
,
J. Chem. Phys.
102
,
6032
(
1995
).
9.
C. A.
Michaels
,
H. C.
Tapalian
,
Z.
Lin
,
E. T.
Sevy
, and
G. W.
Flynn
,
Faraday Discuss.
102
,
405
(
1995
).
10.
E. T.
Sevy
,
S. M.
Rubin
,
Z.
Lin
, and
G. W.
Flynn
,
J. Chem. Phys.
113
,
4912
(
2000
).
11.
C. A.
Michaels
,
Z.
Lin
,
A. S.
Mullin
, and
G. W.
Flynn
,
J. Chem. Phys.
106
,
7055
(
1997
).
12.
G.
Lendvay
and
G. C.
Schatz
,
J. Phys. Chem.
98
,
6530
(
1994
).
13.
D. C.
Clary
,
R. G.
Gilbert
,
V.
Bernshtein
, and
I.
Oref
,
Faraday Discuss. Chem. Soc.
102
,
423
(
1995
).
14.
D. L.
Clarke
and
R. G.
Gilbert
,
J. Phys. Chem.
96
,
8450
(
1992
).
15.
B. M.
Toselli
and
J. R.
Barker
,
J. Chem. Phys.
97
,
1809
(
1992
).
16.
B. M.
Toselli
,
J. D.
Brenner
,
M. L.
Yerram
,
W. E.
Chin
,
K. D.
King
, and
J. R.
Barker
,
J. Chem. Phys.
95
,
176
(
1991
).
17.
F.
Wu
and
R. B.
Weisman
,
J. Chem. Phys.
110
,
5047
(
1999
).
18.
M.
Fraelich
,
M. S.
Elioff
, and
A. S.
Mullin
,
J. Phys. Chem.
102
,
9761
(
1998
).
19.
M. S.
Elioff
,
M.
Fraelich
,
R. L.
Sansom
, and
A. S.
Mullin
,
J. Chem. Phys.
111
,
3517
(
1999
).
20.
K.
Sushida
,
I.
Yamazaki
, and
H.
Baba
,
Oyo Denki Kenkyusho Hokoku
32
,
36
(
1980
).
21.
L. S.
Rothman
,
R. R.
Gamache
,
A.
Goldman
et al.,
Appl. Opt.
26
,
4058
(
1986
).
22.
SigmaPlot 4.01 Numerical Recipes (1997), Levenberg Marquardt algorithm. D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its Applications (Wiley, New York, 1988).
23.
M.
Elioff
,
R.
Sansom
, and
A. S.
Mullin
,
J. Phys. Chem.
104
,
10304
(
2000
).
24.
(a) I. W. M. Smith, Kinetics and Dynamics of Elementary Gas Reactions (Butterworths, London, 1980);
(b) J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1965);
(c)
T. J.
Bevilacqua
and
R. B.
Weisman
,
J. Chem. Phys.
98
,
6316
(
1993
);
(d) parameters determined from critical constants Vc and Tc (taken from CRC Handbook of Chemistry and Physics, 1996) using the expressions σ=0.813(Vc)1/3 and ε/kB=0.404Tc(Zc)−0.53 [from Ref. 24(b)]. The compressibility factor Zc=0.277 for pyridine is used for each donor;
(e) parameters for lutidine are estimated based on trends for benzene, toluene and o-xylene using values for pyridine and picoline.
25.
M. S. Elioff, M. Fang, J. Neudel, and A. S. Mullin (unpublished).
26.
R. L. Sansom, S. Bonella, D. F. Coker, and A. S. Mullin (unpublished).
27.
B. M.
Toselli
and
J. R.
Barker
,
Chem. Phys. Lett.
174
,
304
(
1990
).
28.
J. F.
Durana
and
J. D.
McDonald
,
J. Chem. Phys.
64
,
2518
(
1976
).
29.
D.
Romanini
and
K. K.
Lehmann
,
J. Chem. Phys.
98
,
6437
(
1993
).
30.
J. T. Yardley, Introduction to Molecular Energy Transfer (Academic, New York, 1980).
31.
P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, 3rd ed. (Oxford University Press, Oxford, 1997).
32.
Our expression relating the energy transfer probability to the density of states is reminiscent of the Impulsive Ergodic Collision Theory (IECT) developed by Nordholm and co-workers [
Nordholm
,
Freasier
, and
Jolly
,
Chem. Phys.
25
,
433
(
1977
);
Nordholm
,
Freasier
, and
Jolly
,
Chem. Phys.
32
,
161
(
1978
);
Nordholm
,
Freasier
, and
Jolly
,
Chem. Phys.
32
,
169
(
1978
)], although the premises of the theory are quite different from the approach taken here. Where we have an undetermined matrix element, Nordholm has empirical parameters and where we have focussed on the rotational energy gain in water following collisional energy transfer, Nordholm looked at vibrational energy gain. A key premise of IECT is that energy transfer is modeled by assuming microcanonical energy redistribution following complex formation of the collision partners. Our results, on the other hand, highlight the impulsive nature of the collisional energy transfer for this pathway, which does not occur via complex formation prior to energy redistribution. A more extensive comparison of these two approaches will be considered in a future publication.
This content is only available via PDF.
You do not currently have access to this content.