Amphiphilic surfactants, molecules with chemical moieties that interact differently with the solvating medium, are important for technological applications and ubiquitous in biology. Understanding how to control surfactant properties is, therefore, of wide-ranging importance. Using a combination of light scattering experiments and field theory, we demonstrate that the behavior of polymeric surfactants can be controlled sensitively by manipulating molecular architecture. We find that branched polymeric amphiphiles can be much better surfactants than traditional linear analogs. This is indicated by micelle formation in solvents that are very slightly selective for the backbone of the branched molecule. Our experimental and theoretical findings also suggest that, for a given chemistry and architectural class, surfactant properties of polymeric amphiphiles are very sensitive to subtle changes in architectural features. Specifically, we find that choosing a particular branching density optimizes the propensity for micelle formation. The sensitivity of macromolecular surfactant properties to molecular architecture can perhaps be profitably exploited in applications wherein only certain chemical moieties are allowed. The physical origin of this sensitivity is the importance of conformational entropy penalties associated with the pertinent self-assembly process. This is in contrast to self-assembly of small molecule systems where conformational entropy is not of such significance.

1.
R. Zana, Surfactant Solutions (Marcel Dekker, New York, 1987);
D. D. Lasic, Liposomes: From Physics to Applications (Elsevier, Amsterdam, 1993);
R. G. Larson, The Structure and Rheology of Complex Fluids (Oxford, New York, 1999);
G. Gompper and M. Schick, Self-Assembling Amphiphilic Systems (Academic San Diego, 1994);
S. A. Safran and N. A. Clark, Physics of Complex and Supramolecular Fluids (Wiley, New York, 1987).
2.
B. M.
Discher
,
Y. Y.
Won
,
D. S.
Ege
,
J. C. M.
Lee
,
F. S.
Bates
,
D. E.
Discher
, and
D. A.
Hammer
,
Science
284
,
1143
(
1999
);
Y. Y.
Yon
,
H. T.
Davis
, and
F. S.
Bates
,
Science
283
,
960
(
1999
);
D.
Zhao
,
J.
Feng
,
Q.
Huo
,
N.
Melosh
,
G. H.
Fredrickson
,
B. F.
Chmelka
, and
G. D.
Stucky
,
Science
279
,
548
(
1998
).
3.
K. P.
Johnston
,
K. L.
Harrison
,
M. J.
Clarke
,
S. M.
Howdle
,
M. P.
Heitz
,
F. V.
Bright
,
C. R.
Clarier
, and
T. W.
Randolph
,
Science
271
,
624
(
1996
);
J. M.
DeSimone
,
E. E.
Maury
,
Y. Z.
Menceloglu
,
J. B.
McClain
, and
T.
Romack
,
Science
265
,
356
(
1994
).
4.
N. P.
Balsara
,
Curr. Opin. Solid State Mater. Sci.
3
,
589
(
1998
).
5.
S.
Karaborni
and
B.
Smit
,
Curr. Opin. Colloid Interface Sci.
1
,
411
(
1996
);
S.
Karaborni
,
K.
Esselink
,
P. A. J.
Hilbers
,
B.
Smit
,
J.
Karth”auser
,
N. M.
van Os
, and
R.
Zana
,
Science
266
,
254
(
1994
).
6.
R.
Lewis
,
R. N.
McElhaney
,
P. E.
Harper
,
D. C.
Turner
, and
S. M.
Gruner
,
Biophys. J.
66
,
1088
(
1994
);
K.
Gawrisch
,
V. A.
Parsegian
,
D. A.
Hajduk
,
M. W.
Tate
,
S. M.
Gruner
,
N. L.
Fuller
, and
R. P.
Rand
,
Biochemistry
31
,
2856
(
1992
);
M. W.
Tate
,
E. F.
EikenBerry
,
D. C.
Turner
, and
E.
Shyamsunder
,
Chem. Phys. Lipids
57
,
147
(
1991
).
7.
D. J.
Pochan
,
S. G.
Gido
,
S.
Pispas
, and
J. W.
Mays
,
Macromolecules
29
,
5099
(
1996
).
8.
D.
Danino
,
Y.
Talmon
,
H.
Levy
,
G.
Beinert
, and
R.
Zana
,
Science
269
,
1420
(
1995
);
R.
Zana
,
Curr. Opin. Colloid Interface Sci.
1
,
556
(
1996
).
9.
B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell (Garland, New York, 1994).
10.
M.
Xenidou
and
N.
Hadjichristidis
,
Macromolecules
31
,
5690
(
1998
).
11.
J. Q.
Zhao
,
E. M.
Pearce
,
T. K.
Kwei
,
J. S.
Jeon
,
P. K.
Kesani
, and
N. P.
Balsara
,
Macromolecules
28
,
1972
(
1995
).
12.
S.
Provencher
,
Makromol. Chem.
180
,
201
(
1979
). In Eq. (1), a and B are instrument related constants.
13.
M.
Shibayama
,
T.
Hashimoto
, and
H.
Kawai
,
Macromolecules
16
,
1434
(
1983
).
14.
T.
Jian
,
S. H.
Anastasiadis
,
A. N.
Semenov
,
G.
Fytas
,
G.
Fleischer
, and
A. D.
Vilesov
,
Macromolecules
28
,
2439
(
1995
).
15.
The Flory–Huggins (Ref. 16) interaction parameter (χ) for toluene–polystyrene interactions is estimated at 0.43, compared to 0.40, the χ parameter for toluene–polyisoprene interactions. These interaction parameters were measured from subtle small angle neutron scattering measurements on hydrogeneous and deuterated toluene solutions of polystyrene–polyisoprene block copolymers where the amount of solvent partitioning to the polystyrene–polyisoprene interface was measured (Ref. 17). We are unaware of any direct measurements of this kind for polystyrene–polybutadiene block copolymers. However, given the similarity of the chemical structures of polybutadiene and polyisoprene, and the fact that many materials exhibit similar interactions with polybutadiene and polyisoprene, we conclude that toluene is a slightly selective solvent for the backbone of our branched copolymers.
16.
M. L.
Huggins
,
J. Phys. Chem.
46
,
151
(
1942
);
P. J.
Flory
,
J. Chem. Phys.
10
,
51
(
1942
).
17.
C. I.
Huang
,
B. R.
Chapman
,
T. P.
Lodge
, and
N. P.
Balsara
,
Macromolecules
31
,
9384
(
1998
).
18.
Extensive studies of toluene solutions of polystyrene–polyisoprene diblock copolymers with molecular weights as high as 20 000 kg/mol have been conducted and no evidence of micelle formation has been reported (Ref. 19). Studies of toluene solutions of polystyrene–polybutadiene diblock copolymers are not as extensive (Refs. 13, 14)—restricted to molecular weights of 70 kg/mol; but, again, no evidence of micelle formation has been reported.
19.
A. N.
Semenov
,
S. H.
Anastasiadis
,
N.
Boudenne
,
G.
Fytas
,
M.
Xenidou
, and
N.
Hadjichristidis
,
Macromolecules
30
,
6280
(
1997
).
20.
L.
Leibler
,
H.
Orland
, and
J. C.
Wheeler
,
J. Chem. Phys.
79
,
3550
(
1980
).
21.
S.
Qi
,
A. K.
Chakraborty
,
H.
Wang
,
A. A.
Lefebvre
, and
N. P.
Balsara
,
Phys. Rev. Lett.
82
,
2896
(
1999
).
22.
S. Qi, A. K. Chakraborty, and N. P. Balsara, J. Chem. Phys. (in press).
23.
S. F.
Edwards
and
P. W.
Anderson
,
J. Phys. F
5
,
965
(
1975
).
24.
A.
Shinozaki
,
D.
Jasnow
, and
A. C.
Balazs
,
Macromolecules
27
,
2496
(
1994
).
25.
S. Qi and A. K. Chakraborty, J. Chem. Phys. (in press).
26.
We have used the simplest model that captures the essential physics of the problem, and hence we consider the backbone segments to be chemically identical to the solvent molecules. In this respect, it is similar in spirit to that of Leibler et al. for diblock copolymer micelles (Ref. 19). In the model, the grafting points are located at one end of the branch while in the experiments, the grafting points are located at the middle of the branch. These simplifications do not affect the qualitative trends that we predict.
27.
P. D.
Olmsted
and
S. T.
Milner
,
Phys. Rev. Lett.
72
,
936
(
1994
).
28.
D. G.
Walton
,
P. P.
Soo
,
A. M.
Mayes
,
S. J. Sofia
Allgor
,
J. T.
Fujii
,
L. G.
Griffith
,
J. F.
Anker
,
H.
Kaiser
,
J.
Johansson
,
G. D.
Smith
,
J. G.
Barker
, and
S. K.
Satija
,
Macromolecules
30
,
6974
(
1997
).
29.
M. R.
Anklam
,
D. A.
Saville
, and
R. K.
Prud’homme
,
Langmuir
15
,
7299
(
1999
).
30.
K. M.
Hong
and
J.
Noolandi
,
Macromolecules
14
,
727
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.