We present a theoretical analysis of O2 adsorption on a reduced TiO2 (110) rutile surface, based on periodic ab initio Hartree–Fock calculations. Three different orientational approaches, three different spin symmetries, and two different adsorption sites are considered. We also consider the possibility that the surface can absorb more than one oxygen molecule. Positions of the surface ions, oxygen ions belonging to the third and fourth layers of the slab, and the bond lengths of the O2 and O2-substrate distances are optimized. Adsorption energies, admolecule-substrate bond lengths, spin densities and Mulliken charges are analyzed. The model is tested by comparing spin densities and relaxation parameters obtained for the reduced TiO2 (110) system to previous theoretical results. Finally, we discuss the relationship of our results to experimental observations of thermal desorption rates at low temperatures (100–600 K).

1.
M. A.
Fox
and
M. T.
Dulay
,
Chem. Rev.
93
,
341
(
1993
).
2.
V. E. Henrich and P. A. Cox, in The Surface Science of Metal Oxides (Cambridge University Press, England, 1993).
3.
A. L.
Linsebigler
,
A. L.
Lu
, and
J. T.
Yates
,
Chem. Rev.
95
,
735
(
1995
).
4.
A.
Fujishima
,
N. R.
Tata
, and
D. A.
Tryk
,
Electrochim. Acta
45
,
4683
(
2000
).
5.
A.
Fujishima
and
K.
Honda
,
Nature (London)
238
,
37
(
1972
).
6.
A.
Heller
,
Acc. Chem. Res.
28
,
503
(
1995
).
7.
K.
Ikeda
,
H.
Sakai
,
R.
Baba
,
K.
Hashimoto
,
A.
Fujishima
, and
A.
Heller
,
J. Phys. Chem. B
101
,
2617
(
1997
).
8.
J.
Huusko
,
V.
Lantto
, and
H.
Torvela
,
Sens. Actuators B
16
,
245
(
1993
).
9.
N. O.
Savage
,
S. A.
Akbar
, and
P. K.
Dutta
,
Sens. Actuators B
72
,
239
(
2001
).
10.
C. H.
Hung
,
P. C.
Chiang
,
C.
Yuan
, and
C. Y.
Chou
,
Water Science and Technology
43
,
313
(
2001
).
11.
A. G.
Rincond
,
C.
Pulgarin
,
N.
Adler
, and
P.
Peringer
,
J. Photochem. Photobiol., A
139
,
233
(
2001
).
12.
U.
Gesenhues
,
J. Photochem. Photobiol., A
139
,
243
(
2001
).
13.
A.
Piscopo
,
D.
Robert
, and
J. V.
Weber
,
J. Photochem. Photobiol., A
139
,
253
(
2001
).
14.
J. L.
Zhang
,
T.
Ayusawa
,
M.
Minagawa
,
K.
Kinugawa
,
H.
Yamashita
,
M.
Matsuoka
, and
M.
Anpo
,
J. Catal.
198
,
1
(
2001
).
15.
K.
Ishibashi
,
A.
Fujishima
, and
T.
Watanabe
,
Electrochemistry
69
,
160
(
2001
).
16.
T. F.
Xie
,
D. J.
Wang
,
L. J.
Zhu
,
T. J.
Li
, and
Y. J.
Xu
,
Mater. Chem. Phys.
70
,
103
(
2001
).
17.
C.
Hu
,
Y. Z.
Wang
, and
H. X.
Tang
,
Appl. Catal., B
30
,
277
(
2001
).
18.
T. C. K.
Yang
,
S. F.
Wang
,
S. H. Y.
Tsai
, and
S. Y.
Lin
,
Appl. Catal., B
30
,
293
(
2001
).
19.
A. M.
Peiro
,
J. A.
Ayllon
,
J.
Peral
, and
X.
Domenech
,
Appl. Catal., B
30
,
359
(
2001
).
20.
T. E.
Madey
,
Faraday Discuss.
114
,
461
(
1999
).
21.
M. A.
Henderson
,
W. S.
Epling
,
C. L.
Perkins
,
C. H. H.
Peden
, and
U.
Diebold
,
J. Phys. Chem. B
103
,
5328
(
1999
).
22.
A.
Mills
,
R. H.
Davies
, and
D.
Worsley
,
Chem. Soc. Rev.
22
,
417
(
1993
).
23.
J. M.
Pan
,
B. L.
Maschhoff
,
U.
Diebold
, and
T. E.
Madey
,
J. Vac. Sci. Technol. A
10
,
2470
(
1992
).
24.
C.
Naccache
,
P.
Meraudeau
,
M.
Che
, and
A. J.
Tench
,
Trans. Faraday Soc.
67
,
506
(
1971
).
25.
G.
Lu
,
A.
Linsebigler
, and
J. T.
Yates
,
J. Chem. Phys.
102
,
3005
(
1995
).
26.
G.
Lu
,
A.
Linsebigler
, and
J. T.
Yates
,
J. Chem. Phys.
102
,
4657
(
1995
).
27.
C. N.
Rusu
and
J. T.
Yates
,
Langmuir
13
,
4311
(
1997
).
28.
C.
Shu
,
N.
Sukumar
, and
C. P.
Ursenbach
,
J. Chem. Phys.
110
,
10539
(
1999
).
29.
P.
Reinhardt
and
B. A.
Hess
,
Phys. Rev. B
50
,
12015
(
1994
).
30.
P.
Brumer
and
M.
Shapiro
,
Chem. Phys. Lett.
126
,
541
(
1986
).
31.
C.
Minot
and
A.
Markovits
,
J. Mol. Struct.: THEOCHEM
424
,
119
(
1998
).
32.
R. Dovesi, V. R. Saunderds, C. Roetti, M. Causá, N. M. Harrison, R. Orlando, and E. Aprá, CRYSTAL98 User’s Manual (University of Torino, Torino, 1998).
33.
P. J. D.
Lindan
,
N. M.
Harrison
,
M. J.
Gillan
, and
J. A.
White
,
Phys. Rev. B
55
,
15919
(
1997
).
34.
W. C.
Mackrodt
,
E. A.
Simson
, and
N. M.
Harrison
,
Surf. Sci.
384
,
192
(
1997
).
35.
M.
Ramamoorthy
,
R. D.
King-Smith
, and
D.
Vanderbilt
,
Phys. Rev. B
49
,
7709
(
1994
).
36.
A. T.
Paxton
and
L.
Thien-Nga
,
Phys. Rev. B
57
,
1579
(
1998
).
37.
C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal, Fortran Subroutines for Large Scale Bound Constrained Optimization (Dept. of Elec. Eng. and Comp. Sci., Northwestern University, Illinois, 1994).
38.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
270
(
1985
).
39.
J. Muscat, The Phase Stability, Surface Structure and Defect Chemistry of Titanium Dioxide from First Principles Techniques, Thesis (University of Manchester, 1999).
40.
M. de Lara-Castells, S. Fau, and J. L. Krause (unpublished).
41.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
42.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
16
,
1748
(
1976
).
43.
J. K.
Burdett
,
T.
Hughbanks
,
G. J.
Miller
,
J. W.
Richardson
, and
J. V.
Smith
,
J. Am. Chem. Soc.
109
,
3639
(
1987
).
44.
F. A. Cotton, Advanced Inorganic Chemistry, 5th ed. (John Wiley and Sons, New York, 1988).
45.
M. de Lara-Castells and J. L. Krause (unpublished).
This content is only available via PDF.
You do not currently have access to this content.