A conical intersection exists between the ground (1 A2) and the first-excited (2  A2) electronic potential energy surfaces (PESs) of the H3 system for C3v geometries. This intersection induces a geometric phase effect, an important factor in accurate quantum mechanical reactive scattering calculations, which at low energies can be performed using the ground PES only, together with appropriate nuclear motion boundary conditions. At higher energies, however, such calculations require the inclusion of both the 1 2A and 2 2A electronic PESs and the corresponding nuclear derivative couplings. Here we present ab initio first-derivative couplings for these states obtained by analytic gradient techniques and a fit to these results. We also present a fit to the corresponding 1 2A and 2 2A adiabatic electronic PESs, obtained from the ab initio electronic energies. The first-derivative couplings are compared with their approximate analytical counterparts obtained by Varandas et al. [J. Chem. Phys. 86, 6258 (1987)] using the double many-body expansion method. As expected, the latter are accurate close to conical intersection configurations but not elsewhere. We also present the contour integrals of the ab initio couplings along closed loops around the above-mentioned conical intersection, which contain information about possible interactions between the 2 2A and 3 2A states.

1.
G.
Nyman
and
H.-G.
Yu
,
Rep. Prog. Phys.
63
,
1001
(
2000
).
2.
Dynamics of Molecules and Chemical Reactions, edited by R. E. Wyatt and J. Z. H. Zhang (Dekker, New York, 1996).
3.
Theory of Chemical Reaction Dynamics, edited by M. Baer (CRC, Boca Raton, 1985), Vols. I and II.
4.
J. Z. H.
Zhang
,
J. Q.
Dai
, and
W.
Zhu
,
J. Phys. Chem. A
101
,
2746
(
1997
).
5.
S. K.
Pogrebnya
,
J.
Palma
,
D. C.
Clary
, and
J.
Echave
,
Phys. Chem. Chem. Phys.
2
,
693
(
2000
).
6.
G.
Herzberg
and
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
7.
H. C.
Longuet-Higgins
,
Proc. R. Soc. London, Ser. A
344
,
147
(
1975
).
8.
H. C.
Longuet-Higgins
,
Adv. Spectrosc. (N.Y.)
2
,
429
(
1961
).
9.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
).
10.
C. A.
Mead
,
Chem. Phys.
49
,
23
(
1980
).
11.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
12.
A. Kupperman, in Ref. 2, pp. 411–472.
13.
Y.
Aharonov
and
D.
Bohm
,
Phys. Rev.
115
,
485
(
1969
).
14.
Y.-S. M.
Wu
,
A.
Kuppermann
, and
B.
Lepetit
,
Chem. Phys. Lett.
186
,
319
(
1991
).
15.
Y.-S. M.
Wu
and
A.
Kuppermann
,
Chem. Phys. Lett.
201
,
178
(
1993
).
16.
A.
Kuppermann
and
Y.-S. M.
Wu
,
Chem. Phys. Lett.
205
,
577
(
1993
).
17.
Y.-S. M.
Wu
and
A.
Kuppermann
,
Chem. Phys. Lett.
235
,
105
(
1995
).
18.
A.
Kuppermann
and
Y.-S. M.
Wu
,
Chem. Phys. Lett.
241
,
229
(
1995
).
19.
D. A. V.
Kliner
,
K. D.
Rinen
, and
R. N.
Zare
,
Chem. Phys. Lett.
166
,
107
(
1990
).
20.
D. A. V.
Kliner
,
D. E.
Adelman
, and
R. N.
Zare
,
J. Chem. Phys.
95
,
1648
(
1991
).
21.
D.
Neuhauser
,
R. S.
Judson
,
D. J.
Kouri
,
D. E.
Adelman
,
N. E.
Shafer
, and
D. A. V.
Kliner
,
Science
257
,
519
(
1992
).
22.
D. E.
Adelman
,
N. E.
Shafer
,
D. A. V.
Kliner
, and
R. N.
Zare
,
J. Chem. Phys.
97
,
7323
(
1992
).
23.
M. Born, Nachr. Akad. Wiss. Gött. Math.-Phys. Kl. Article No. 6, 1 (1951).
24.
M. Born and K. Huang, Dynamical Theory of Crystal Lattice (Oxford University Press, Oxford, 1954), pp. 166–177 and 402–407.
25.
R. J. Buenker, G. Hirsch, S. D. Peyerimhoff, P. J. Bruna, J. Römelt, M. Bettendorff, and C. Petrongolo, in Current Aspects of Quantum Chemistry (Elsevier, New York, 1981), pp. 81–97.
26.
M.
Desouter-Lecomte
,
C.
Galloy
,
J. C.
Lorquet
, and
M. V.
Pires
,
J. Chem. Phys.
71
,
3661
(
1979
).
27.
B. H.
Lengsfield
,
P.
Saxe
, and
D. R.
Yarkony
,
J. Chem. Phys.
81
,
4549
(
1984
).
28.
P.
Saxe
,
B. H.
Lengsfield
, and
D. R.
Yarkony
,
Chem. Phys. Lett.
113
,
159
(
1985
).
29.
B. H.
Lengsfield
and
D. R.
Yarkony
,
J. Chem. Phys.
84
,
348
(
1986
).
30.
J. O.
Jensen
and
D. R.
Yarkony
,
J. Chem. Phys.
89
,
975
(
1988
).
31.
V. Sidis, in State-selected and State-to-State Ion- Molecule Reaction Dynamics Part 2, Theory, Vol. 82, edited by M. Baer and C.-Y. Ng (Wiley, New York, 1992), pp. 73–134.
32.
M.
Baer
,
Chem. Phys. Lett.
35
,
112
(
1975
).
33.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
34.
C. A.
Mead
,
J. Chem. Phys.
78
,
807
(
1983
).
35.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Chem. Phys.
89
,
7367
(
1988
).
36.
E.
Mercier
and
G.
Chambaud
,
J. Phys. B
20
,
4659
(
1987
).
37.
T.
Pacher
,
C. A.
Mead
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Chem. Phys.
91
,
7057
(
1989
).
38.
T.
Pacher
,
H.
Köppel
, and
L. S.
Cederbaum
,
J. Chem. Phys.
95
,
6668
(
1991
).
39.
M.
Baer
and
R.
Englman
,
Mol. Phys.
75
,
293
(
1992
).
40.
I. D.
Petasalakis
,
G.
Theodorakopoulos
, and
C. A.
Nicolaides
,
J. Chem. Phys.
97
,
7623
(
1992
).
41.
K.
Ruedenberg
and
G. J.
Atchity
,
J. Chem. Phys.
99
,
3799
(
1993
).
42.
D. R.
Yarkony
,
J. Chem. Phys.
105
,
10456
(
1996
).
43.
R.
Thurwachter
and
P.
Halvick
,
Chem. Phys.
221
,
33
(
1997
).
44.
V. M.
Garcia
,
M.
Reguero
,
R.
Caballol
, and
J. P.
Malrieu
,
Chem. Phys. Lett.
281
,
161
(
1997
).
45.
H.
Nobutoki
,
Int. J. Quantum Chem.
74
,
745
(
1999
).
46.
D. R.
Yarkony
,
J. Chem. Phys.
114
,
2601
(
2001
).
47.
G. C.
Schatz
and
A.
Kuppermann
,
J. Chem. Phys.
65
,
4668
(
1976
).
48.
W. H.
Miller
and
J. Z. H.
Zhang
,
J. Phys. Chem.
95
,
12
(
1991
).
49.
R. T.
Pack
and
G. A.
Parker
,
J. Chem. Phys.
87
,
3888
(
1987
).
50.
F.
Webster
and
J. C.
Light
,
J. Chem. Phys.
90
,
300
(
1989
).
51.
C. A.
Mead
,
J. Chem. Phys.
72
,
3839
(
1980
).
52.
B.
Lepetit
and
A.
Kuppermann
,
Chem. Phys. Lett.
166
,
581
(
1990
).
53.
Z. Peng, Ph.D. thesis, California Institute of Technology, Pasadena, CA (1991).
54.
A. J. C.
Varandas
,
F. B.
Brown
,
C. A.
Mead
,
D. G.
Truhlar
, and
N. C.
Blais
,
J. Chem. Phys.
86
,
6258
(
1987
).
55.
B. H. Lengsfield and D. R. Yarkony, in State-selected and State to State Ion-Molecule Reaction Dynamics: Part 2 Theory, Vol. 82, edited by M. Baer and C.-Y. Ng (Wiley, New York, 1992), pp. 1–71.
56.
C.
Galloy
and
J. C.
Lorquet
,
J. Chem. Phys.
67
,
4672
(
1971
).
57.
H. J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5802
(
1981
).
58.
D.
Dehareng
,
X.
Chapuisat
,
J. C.
Lorquet
,
C.
Galloy
, and
G.
Raseev
,
J. Chem. Phys.
78
,
1246
(
1983
).
59.
H. J.
Werner
,
B.
Follmeg
, and
M. H.
Alexander
,
J. Chem. Phys.
89
,
3139
(
1988
).
60.
D. R.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
61.
N.
Matsunaga
and
D. R.
Yarkony
,
J. Chem. Phys.
107
,
7825
(
1997
).
62.
N.
Matsunaga
and
D. R.
Yarkony
,
Mol. Phys.
93
,
79
(
1998
).
63.
D. R.
Yarkony
,
Mol. Phys.
93
,
971
(
1998
).
64.
D. R.
Yarkony
,
J. Chem. Phys.
84
,
3206
(
1986
).
65.
J. O.
Jensen
and
D. R.
Yarkony
,
J. Chem. Phys.
90
,
1657
(
1989
).
66.
H. J.
Silverstone
and
O.
Sinanoglu
,
J. Chem. Phys.
44
,
1899
(
1966
).
67.
I. Shavitt, Modern Theoretical Chemistry (Plenum, New York, 1976), Vol. 3.
68.
H. J. Werner, in Advances in Chemical Physics, edited by K. P. Lawley (Wiley, New York, 1987), Vol. 69, p. 1.
69.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
70.
B. O.
Roos
,
Int. J. Quantum Chem., Quantum Chem. Symp.
14
,
175
(
1980
).
71.
P.
Siegbahn
,
A.
Heiberg
,
B.
Roos
, and
B.
Levy
,
Phys. Scr.
21
,
323
(
1980
).
72.
H. J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5794
(
1981
).
73.
B. H.
Lengsfield
,
J. Chem. Phys.
77
,
4073
(
1982
).
74.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1992), pp. 116–122.
75.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw–Hill, New York, 1953), pp. 52–54, 1763.
76.
R. G.
Sadygov
and
R. D.
Yarkony
,
J. Chem. Phys.
109
,
20
(
1998
).
77.
M.
Baer
,
Chem. Phys.
15
,
49
(
1976
).
78.
R.
Englman
,
A.
Yahalom
, and
M.
Baer
,
Eur. Phys. J. D
8
,
1
(
2000
).
79.
R.
Englman
and
M.
Baer
,
J. Phys.: Condens. Matter
11
,
1059
(
1999
).
80.
A. M.
Mebel
,
M.
Baer
,
V. M.
Rozenbaum
, and
S. H.
Lin
,
Chem. Phys. Lett.
336
,
135
(
2001
).
81.
B.
Liu
,
J. Chem. Phys.
58
,
1925
(
1973
).
82.
P.
Siegbahn
and
B.
Liu
,
J. Chem. Phys.
68
,
2457
(
1978
).
83.
M. R. A.
Blomberg
and
B.
Liu
,
J. Chem. Phys.
82
,
1050
(
1985
).
84.
R. N.
Porter
,
R. M.
Stevens
, and
M.
Karplus
,
J. Chem. Phys.
49
,
5163
(
1968
).
85.
T. C.
Thompson
and
C. A.
Mead
,
J. Chem. Phys.
82
,
2408
(
1985
).
86.
T. C.
Thompson
,
G.
Izmirlian
, Jr.
,
S. J.
Lemon
,
D. G.
Truhlar
, and
C. A.
Mead
,
J. Chem. Phys.
82
,
5597
(
1985
).
87.
K. D.
Jordan
,
Chem. Phys.
9
,
199
(
1975
).
88.
T.
Ho
and
H.
Rabitz
,
J. Chem. Phys.
104
,
2584
(
1996
).
89.
A.
Frishman
,
D. K.
Hoffman
, and
D. J.
Kouri
,
J. Chem. Phys.
107
,
804
(
1997
).
90.
S.
Rogers
,
D.
Wang
,
S.
Walch
, and
A.
Kuppermann
,
J. Phys. Chem. A
104
,
2308
(
2000
).
91.
A.
Kuppermann
,
Chem. Phys. Lett.
32
,
374
(
1975
).
92.
L. M.
Delves
,
Nucl. Phys.
9
,
391
(
1959
).
93.
L. M.
Delves
,
Nucl. Phys.
20
,
275
(
1960
).
94.
D.
Jepsen
and
J. O.
Hirschfelder
,
Proc. Natl. Acad. Sci. U.S.A.
45
,
249
(
1959
).
95.
F. T.
Smith
,
J. Math. Phys.
3
,
735
(
1962
).
96.
A. Kuppermann, in Advances in Molecular Vibrations and Collision Dynamics, edited by J. Bowman (JAI, Greenwich, CT, 1994), Vol. 2B, pp. 117–186.
97.
R. T. Ling and A. Kuppermann, in Electronic and Atomic Collisions, Abstract of the 9th International Conference on the Physics of Electronic and Atomic Collisions, Seattle, Washington, 24–30 July 1975, edited by J. S. Riley and R. Geballe (University of Washington Press, Seattle, 1975), Vol. 1, pp. 353–354.
98.
Y.-S. M.
Wu
,
A.
Kuppermann
, and
J. B.
Anderson
,
Phys. Chem. Chem. Phys.
6
,
929
(
1999
).
99.
D. G.
Truhlar
and
C. J.
Horowitz
,
J. Chem. Phys.
68
,
2466
(
1978
);
D. G.
Truhlar
and
C. J.
Horowitz
,
J. Chem. Phys.
71
,
1514
(E) (
1979
).
100.
R. G.
Sadygov
and
D. R.
Yarkony
,
J. Chem. Phys.
110
,
3639
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.