The manifestations of the symmetry-breaking artifact in three-electron-bonded systems have been investigated at several computational levels including second-order Møller–Plesset perturbation theory (MP2), coupled cluster (CC), and Bruckner-coupled cluster (B-CC) theories. The model systems, [HnX∴XHn]+(X=Ne, F, O, N, Ar, Cl, S, P; n=0–3) cover all types of three-electron bonds that can possibly take place between atoms of the second and third rows of the Periodic Table. The critical interatomic distance beyond which symmetry breaking begins to take place at the Hartree–Fock and Møller–Plesset levels are determined for each model system. Their magnitude are found to obey regular tendencies which are related to the compactness of the orbitals involved in the three-electron bonds. In all model systems, the onsets of symmetry-breaking at the MP2 level are greater or equal to the equilibrium bonding distance between the XHn fragments. The symmetry-breaking artifact results in severe discontinuities in the dissociation curves at the MP2 level. The CC level pushes away the occurrence of the artifact to larger distances but do not remove the discontinuities. The artifact is practically cured at the B-CC level with perturbative treatment of triple excitations. The onset of symmetry-breaking may in some cases be shortened by substituent effects, to the extent that it becomes shorter than the equilibrium bonding distance like in the Me4O2+ and Me2F2+ cation radicals that are found to be symmetry-unstable even in their equilibrium geometries. The artifact carries over to unsymmetrical systems that display close functional resemblance to symmetrical systems, leading to convergence difficulties, erroneous geometries, and unphysical localization of the electronic charge. An economical alternative to the MP2 method, based on the average quadratic coupled-clusters (AQCC), is proposed for such cases, or in cases some stretched three-electron-bonded systems or full dissociation curves are to be investigated.

1.
For leading references, see (a) K.-D. Asmus, in Sulfur-Centered Reactive Intermediates in Chemistry and Biology, edited by C. Chatgilialoglu and K.-D. Amus (Plenum, New York, 1990), p. 155; (b) B. C. Gilbert, ibid. p. 135.
2.
T.
Clark
,
J. Am. Chem. Soc.
110
,
1672
(
1988
), and references therein.
3.
C. Y.
Ng
,
Adv. Chem. Phys.
52
,
263
(
1983
).
4.
T. D.
Mark
and
A. W.
Castleman
, Jr.
,
Adv. At. Mol. Phys.
20
,
66
(
1985
).
5.
A. W.
Castleman
, Jr.
and
R. G.
Keesee
,
Chem. Rev.
86
,
589
(
1986
).
6.
(a)
M.
Meot-Ner
,
P.
Hamlet
,
E. P.
Hunter
, and
F. H.
Field
,
J. Am. Chem. Soc.
100
,
5466
(
1978
);
(b)
M.
Meot-Ner
,
Acc. Chem. Res.
17
,
186
(
1984
).
7.
Gas Phase Ion Chemistry, edited by M. T. Bowers (Academic, New York, 1979), Vols. 1 and 2.
8.
A. J.
Illies
,
P.
Livant
, and
M. L.
McKee
,
J. Am. Chem. Soc.
110
,
7980
(
1988
).
9.
Y.
Deng
,
A. J.
Illies
,
M. A.
James
,
M. L.
McKee
, and
M.
Peschke
,
J. Am. Chem. Soc.
117
,
420
(
1995
).
10.
M. A.
James
and
A. J.
Illies
,
J. Phys. Chem.
100
,
15794
(
1996
).
11.
A. J.
Illies
,
J. Phys. Chem. A
102
,
8774
(
1998
).
12.
B. Braı̈da, S. Hazebrouck, and P. C. Hiberty (in preparation).
13.
S. P.
de Visser
,
L. J.
de Koning
and
N. M. M.
Nibbering
,
Int. J. Mass Spectrom. Ion Processes
157/158
,
283
(
1996
).
14.
S. P.
de Visser
,
F. M.
Bickelhaupt
,
L. J.
de Koning
, and
N. M. M.
Nibbering
,
Int. J. Mass. Spectrom.
179/180
,
43
(
1998
).
15.
P.
Livant
and
A. G.
Illies
,
J. Am. Chem. Soc.
113
,
1510
(
1991
).
16.
S. P.
de Visser
,
L. J.
de Koning
, and
N. M. M.
Nibbering
,
J. Am. Chem. Soc.
120
,
1517
(
1998
).
17.
L. S.
Nichols
,
M. L.
McKee
, and
A. J.
Illies
,
J. Am. Chem. Soc.
120
,
1538
(
1998
).
18.
L. S.
Nichols
and
A. J.
Illies
,
Int. J. Mass. Spectrom.
185/186/187
,
413
(
1999
).
19.
L. S.
Nichols
and
A. J.
Illies
,
J. Am. Chem. Soc.
121
,
9176
(
1999
).
20.
N.
Ganghi
,
J. L.
Wyatt
, and
M. C. R.
Symons
,
J. Chem. Soc. Chem. Commun.
1986
,
1424
.
21.
R. W.
Alder
,
Acc. Chem. Res.
16
,
321
(
1983
), and references therein.
22.
R. W.
Alder
,
M.
Bonifacic
, and
K.-D.
Asmus
,
J. Chem. Soc., Perkin Trans. 2
1986
,
277
.
23.
(a)
J. P.
Dinnocenzo
and
T. E.
Banach
,
J. Am. Chem. Soc.
110
,
971
(
1988
);
(b)
J. P.
Dinnocenzo
,
W. P.
Todd
,
T. R.
Simpson
, and
I. R.
Gould
,
J. Am. Chem. Soc.
112
,
2462
(
1990
).
24.
F.
Gerson
,
J.
Knöbel
,
U.
Buser
,
E.
Vogel
, and
M.
Zehuder
,
J. Am. Chem. Soc.
108
,
3781
(
1986
).
25.
A. R.
Lyons
and
M. C. R.
Symons
,
J. Chem. Soc., Faraday Trans. 2
1972
,
1589
.
26.
M. C. R.
Symons
and
G. D. G.
McConnachie
,
J. Chem. Soc. Chem. Commun.
1982
,
851
.
27.
R. L.
Hudson
and
F.
Williams
,
J. Phys. Chem.
84
,
3483
(
1980
).
28.
K.
Nishikada
and
F.
Williams
,
Chem. Phys. Lett.
34
,
302
(
1975
).
29.
H.
Mohan
and
K.-D.
Asmus
,
J. Phys. Chem.
92
,
118
(
1988
).
30.
W. K.
Musker
,
A. S.
Hirschon
, and
J. T.
Doi
,
J. Am. Chem. Soc.
100
,
7754
(
1978
).
31.
K.-D.
Asmus
,
D.
Bahemenn
,
M.
Bonifacic
, and
H. A.
Gillis
,
Discuss. Faraday Soc.
63
,
1748
(
1977
).
32.
M. C. R.
Symons
and
R. L.
Petersen
,
J. Chem. Soc., Faraday Trans. 2
1978
,
210
.
33.
M.
Bonifacic
and
K.-D.
Asmus
,
J. Chem. Soc., Perkin Trans.
1980
,
758
.
34.
K.-D.
Asmus
,
M.
Göebl
,
K. O.
Hiller
,
S.
Mahling
, and
J.
Möning
,
J. Chem. Soc., Perkin Trans. 2
1985
,
641
.
35.
A.
Abu-Raqabah
and
M. C. R.
Symons
,
J. Am. Chem. Soc.
112
,
8614
(
1990
).
36.
K.
Kishore
and
K.-D.
Asmus
,
J. Phys. Chem.
95
,
7233
(
1991
).
37.
P. M. W.
Gill
and
L.
Radom
,
J. Am. Chem. Soc.
110
,
4931
(
1988
).
38.
M. L.
McKee
,
Chem. Phys. Lett.
165
,
265
(
1990
).
39.
M. L.
McKee
,
J. Phys. Chem.
96
,
1675
(
1992
).
40.
S.
Ekern
,
A.
Illies
,
M. L.
McKee
, and
M.
Peschke
,
J. Am. Chem. Soc.
115
,
12510
(
1993
).
41.
P. C.
Hiberty
,
S.
Humbel
,
D.
Danovich
, and
S.
Shaik
,
J. Am. Chem. Soc.
117
,
9003
(
1995
), and references therein.
42.
T.
Bally
and
S.
Narahari
,
J. Phys. Chem. A
101
,
7923
(
1997
).
43.
B.
Braı̈da
,
A.
Savin
, and
P. C.
Hiberty
,
J. Phys. Chem. A
102
,
7872
(
1998
).
44.
B.
Braı̈da
and
P. C.
Hiberty
,
J. Phys. Chem. A
104
,
4618
(
2000
).
45.
Y.
Zhang
and
W.
Yang
,
J. Chem. Phys.
109
,
2604
(
1998
).
46.
M.
Sodupe
,
J.
Bertran
,
L.
Rodriguez-Santiago
, and
E. J.
Baerends
,
J. Phys. Chem. A
103
,
166
(
1998
).
47.
S.
Humbel
,
I.
Demachy
, and
P. C.
Hiberty
,
Chem. Phys. Lett.
247
,
126
(
1995
).
48.
J.
Paldus
and
A.
Veillard
,
Mol. Phys.
35
,
445
(
1978
), and references therein.
49.
W. D.
Allen
,
D. A.
Horner
,
R. L.
DeKock
,
R. B.
Remington
, and
H. F.
Schaefer
III
,
Chem. Phys.
133
,
11
(
1989
), and references therein.
50.
D. A.
Horner
,
W. D.
Allen
, and
A. G.
Csaszar
,
Chem. Phys. Lett.
186
,
346
(
1991
).
51.
N. A.
Burton
,
Y.
Yamaguchi
,
I. L.
Alberts
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
95
,
7466
(
1991
).
52.
A. D.
McLean
,
B. H.
Lengsfield
III
,
J.
Pacansky
, and
Y.
Ellinger
,
J. Chem. Phys.
83
,
3567
(
1985
).
53.
D.
Feller
,
E.
Huyser
,
W. T.
Borden
, and
E. R.
Davidson
,
J. Am. Chem. Soc.
105
,
1459
(
1983
).
54.
A.
Rauk
,
D.
Yu
, and
D. A.
Armstrong
,
J. Am. Chem. Soc.
116
,
882
(
1994
).
55.
L.
Engelbrecht
and
B.
Liu
,
J. Chem. Phys.
78
,
3097
(
1983
).
56.
C. F.
Jackels
and
E. R.
Davidson
,
J. Chem. Phys.
64
,
2908
(
1976
).
57.
L. A.
Barnes
and
R.
Lindh
,
Chem. Phys. Lett.
223
,
207
(
1994
).
58.
R.
Lindh
and
L. A.
Barnes
,
J. Chem. Phys.
100
,
224
(
1994
).
59.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
60.
(a)
Y.
Xie
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
104
,
7615
(
1996
);
(b)
J.
Hrusak
and
S.
Iwata
,
J. Chem. Phys.
106
,
4877
(
1997
).
61.
J. F.
Stanton
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
5554
(
1992
).
62.
P. C.
Hiberty
,
S.
Humbel
, and
P.
Archirel
,
J. Phys. Chem.
98
,
11697
(
1994
).
63.
A. F.
Voter
and
W. A.
Goddard
 III
,
Chem. Phys.
57
,
253
(
1981
);
A. F.
Voter
and
W. A.
Goddard
 III
,
J. Chem. Phys.
75
,
3638
(
1981
);
A. F.
Voter
and
W. A.
Goddard
III
,
J. Am. Chem. Soc.
108
,
2830
(
1986
).
64.
E.
Hollauer
and
M. A. C.
Nascimento
,
J. Chem. Phys.
99
,
1207
(
1993
).
65.
(a)
C. W.
Baushlicher
,Jr.
and
S. R.
Langhoff
,
J. Chem. Phys.
89
,
4246
(
1988
);
(b)
A.
Sanchez de Meras
,
M.-B.
Lepetit
, and
J.-P.
Malrieu
,
Chem. Phys. Lett.
172
,
163
(
1990
).
66.
K. K.
Docken
and
J.
Hinze
,
J. Chem. Phys.
57
,
4928
(
1972
).
67.
(a)
H.-J.
Wermer
and
W.
Meyer
,
J. Chem. Phys.
74
,
5794
(
1981
);
(b)
H.-J.
Wermer
and
W.
Meyer
,
J. Chem. Phys.
74
,
5802
(
1981
).
68.
A.
Zaitsevskii
and
J.-P.
Malrieu
,
Chem. Phys. Lett.
228
,
458
(
1994
).
69.
T. D.
Crawford
,
J. F.
Stanton
,
W. D.
Allen
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
107
,
10626
(
1997
).
70.
K. R.
Asmis
,
T. R.
Taylor
, and
D. M.
Neumark
,
J. Chem. Phys.
111
,
8838
(
1999
).
71.
K. A.
Bruckner
,
Phys. Rev.
96
,
508
(
1954
).
72.
R. A.
Chiles
and
C. E.
Dykstra
,
J. Chem. Phys.
74
,
4544
(
1981
).
73.
C.
Hampel
,
K. A.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
74.
D. T. Crawford and H. F. Schaefer III, in Reviews in Computational Chemistry, edited by K. Lipkowitz and D. D. Boyd (VCH, New York, 1999), Vol. 14, Chap. 2, pp. 33–136.
75.
N. C.
Handy
,
J. A.
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G. W.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
).
76.
Y.
Xie
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
104
,
7615
(
1996
).
77.
T. D.
Crawford
and
J. F.
Stanton
,
J. Chem. Phys.
112
,
7873
(
2000
).
78.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
79.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
80.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 94 (Gaussian, Inc., Pittsburgh, Pennsylvania, 1995).
81.
MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from R. D. Amos, A. Bernhardsson, A. Berning et al.
82.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
108
,
7560
(
1998
).
83.
T. J.
Lee
and
P. R.
Taylor
,
Int. J. Quantum Chem., Symp.
23
,
199
(
1989
).
84.
(a)
K.-D.
Asmus
,
Acc. Chem. Res.
12
,
436
(
1979
);
(b)
F.
Gerson
,
J.
Knöbel
,
U.
Buser
,
E.
Vogel
, and
M.
Zehnder
,
J. Am. Chem. Soc.
108
,
3781
(
1986
);
(c)
J. P.
Dinnocenzo
and
T. E.
Banach
,
J. Am. Chem. Soc.
110
,
971
(
1988
).
85.
S. A.
Chaudhri
,
H.
Mohan
,
E.
Anklam
, and
K.-D.
Asmus
,
J. Chem. Soc., Perkin Trans. 2
1995
,
383
.
86.
K.
Kishore
,
E.
Anklam
,
A.
Aced
, and
K.-D.
Asmus
,
J. Phys. Chem. A
104
,
9646
(
2000
).
87.
P. G.
Szalay
and
R. J.
Bartlett
,
Chem. Phys. Lett.
214
,
481
(
1993
).
88.
P. G.
Szalay
and
R. J.
Bartlett
,
J. Chem. Phys.
103
,
3600
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.