Coarse-grained molecular dynamics simulation of a bead–spring polymer model has been conducted for polymer melt confined between two solid walls. The wall effect was studied by changing the distance between the walls and the wall–polymer interaction. It was observed that the polymers near the walls are compressed towards the walls: the component of the radius of gyration tensor perpendicular to the wall surfaces decreases in a layer near the walls. The thickness of this surface layer, estimated from the analysis of the static polymer structure, is about 1.0–1.5 times the radius of gyration Rg in the bulk, and is independent of the distance between the walls and the wall–polymer interaction. The relaxation time of the polymers, obtained from the autocorrelation of normal modes, increases with increasing the strength of the wall–polymer interaction and with decreasing the distance between the walls. These wall effects are observed at a distance much larger than Rg. This result is in agreement with the recent dielectric measurements of cis-polyisoprene confined between mica surfaces reported by Cho, Watanabe, and Granick [J. Chem. Phys. 110, 9688 (1999)]. The thickness of the surface layer was also estimated by the position dependence of the static and dynamic properties, and was found to agree with that estimated by the viscoelastic measurements.

1.
J. P.
Montfort
and
G.
Hadziioannou
,
J. Chem. Phys.
88
,
7187
(
1988
).
2.
R. G.
Horn
and
J. N.
Israelachvili
,
Macromolecules
21
,
2836
(
1988
).
3.
R. G.
Horn
,
S. J.
Hirz
,
G.
Hadziioannou
,
C. W.
Frank
, and
J. M.
Catala
,
J. Chem. Phys.
90
,
6767
(
1989
).
4.
J. N.
Israelachvili
,
S. J.
Kott
, and
L. J.
Fetters
,
J. Polym. Sci., Part B: Polym. Phys.
27
,
489
(
1989
).
5.
H-W.
Hu
and
S.
Granick
,
Science
258
,
1339
(
1992
).
6.
S.
Granick
,
Science
253
,
1374
(
1991
).
7.
H-W.
Hu
,
S.
Granick
, and
K. S.
Schweizer
,
J. Non-Cryst. Solids
172-174
,
721
(
1994
).
8.
Y-K.
Cho
,
H.
Watanabe
, and
S.
Granick
,
J. Chem. Phys.
110
,
9688
(
1999
).
9.
M. J.
Stevens
,
M.
Mondello
,
G. S.
Grest
,
S. T.
Cui
,
H. D.
Cochran
, and
P. T.
Cummings
,
J. Chem. Phys.
106
,
7303
(
1997
).
10.
S. A.
Gupta
,
H. D.
Cochran
, and
P. T.
Cummings
,
J. Chem. Phys.
107
,
10316
(
1997
).
11.
A.
Jabbarzadeh
,
J. D.
Atkinson
, and
R. I.
Tanner
,
Phys. Rev. E
61
,
690
(
2000
).
12.
S. T.
Cui
,
P. T.
Cummings
, and
H. D.
Cochran
,
J. Chem. Phys.
111
,
1273
(
1999
).
13.
E.
Manias
,
I.
Bitsanis
,
G.
Hadziioannou
, and
G.
ten Brinke
,
Europhys. Lett.
33
,
371
(
1996
).
14.
J.
Gao
,
W. D.
Luedtke
, and
U.
Landman
,
Phys. Rev. Lett.
79
,
705
(
1997
).
15.
F.
Zhang
,
J. Chem. Phys.
111
,
9082
(
1999
).
16.
J. Y.
Lee
,
A. R. C.
Baljon
,
D. Y.
Sogah
, and
R. F.
Loring
,
J. Chem. Phys.
112
,
9112
(
2000
).
17.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
18.
K.
Kremer
and
G. S.
Grest
,
J. Chem. Phys.
92
,
5057
(
1990
).
19.
G. S.
Grest
,
J. Chem. Phys.
105
,
5532
(
1996
).
20.
L. J.
Fetters
,
D. J.
Lohse
,
D.
Richerd
,
T. A.
Witten
, and
A.
Zirkel
,
Macromolecules
27
,
4639
(
1994
), and references therein.
21.
P. G.
de Gennes
,
C. R. Acad. Sci.
305
,
1181
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.