We have investigated the reactions of vibrationally state-selected ammonia ions with d3-methylamine over the center-of-mass collisional energy range of 0.5 to 10.0 eV and for ammonia ion vibrational states ranging from ν2=1–9. Under these conditions, five major products appear: NH4+,NH3D+,CD2NH2+,CD3NH2+, and CD3NH3+. The cross section for each product is a decreasing function of collision energy and also a decreasing function of energy in the ν2 mode of the ammonia ion, except for CD2NH2+ that shows about a twofold enhancement with increasing internal energy, most notably at low-collision energies. Examination of the velocity scattering profiles shows that the mechanism for formation of each major product does not involve complex formation in this energy range. Branching ratios for each product are measured, and a comparison is presented for CD2NH2+ and CD3NH2+ arising from reactions with ammonia ions prepared in two nearly isoenergetic states. One state has no quanta in the symmetric stretch and five quanta in the umbrella bending mode (1025) and the other has one quantum in the symmetric stretch and two quanta in the umbrella bending mode (1122). Comparison indicates that this reaction is vibrationally mode selective, although the extent of mode selectivity is small.

1.
R. A. Dressler and E. Murad, in Unimolecular and Bimolecular Reaction Dynamics, edited by C. Y. Ng, T. Baer, and I. Powis (Wiley, Chichester, 1994), p. 87.
2.
J. C.
Poutsma
,
M. A.
Everest
,
J. E.
Flad
,
G. C.
Jones
, Jr.
, and
R. N.
Zare
,
Chem. Phys. Lett.
305
,
343
(
1999
).
3.
M. A.
Everest
,
J. C.
Poutsma
, and
R. N.
Zare
,
J. Phys. Chem. A
102
,
9593
(
1998
).
4.
M. A.
Everest
,
J. C.
Poutsma
,
J. E.
Flad
, and
R. N.
Zare
,
J. Chem. Phys.
111
,
2507
(
1999
).
5.
L. A.
Posey
,
R. D.
Guettler
,
N. J.
Kirchner
, and
R. N.
Zare
,
J. Chem. Phys.
101
,
3772
(
1994
).
6.
J. C.
Poutsma
,
M. A.
Everest
,
J. E.
Flad
, and
R. N.
Zare
,
Appl. Phys. B: Lasers Opt.
71
,
623
(
2000
).
7.
S. L.
Anderson
,
Adv. Chem. Phys.
82
,
177
(
1992
).
8.
H.-T.
Kim
,
R. J.
Green
, and
S. L.
Anderson
,
J. Chem. Phys.
112
,
10831
(
2000
).
9.
N. G.
Adams
,
D.
Smith
, and
J. F.
Paulson
,
J. Chem. Phys.
72
,
288
(
1980
).
10.
NIST Chemistry WebBook, edited by W. Mallard (NIST, http://webbook.nist.gov/chemistry, 1998), Vol. 69.
11.
R. D.
Guettler
,
G. C.
Jones
, Jr.
,
L. A.
Posey
,
N. J.
Kirchner
,
B. A.
Keller
, and
R. N.
Zare
,
J. Chem. Phys.
101
,
3763
(
1994
).
12.
P. J.
Miller
,
S. D.
Colson
, and
W. A.
Chupka
,
Chem. Phys. Lett.
145
,
183
(
1988
).
13.
W. E.
Conaway
,
R. J. S.
Morrison
, and
R. N.
Zare
,
Chem. Phys. Lett.
113
,
429
(
1985
).
14.
D.
Gerlich
,
Adv. Chem. Phys.
82
,
1
(
1992
).
15.
R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity (Oxford University Press, New York, 1987).
16.
H.-T.
Kim
,
R. J.
Green
, and
S. L.
Anderson
,
J. Chem. Phys.
113
,
11079
(
2000
).
17.
D. C. Harris, Quantitative Chemical Analysis, 4th ed. (W. H. Freeman and Company, New York, 1995).
18.
A.
Sinha
,
M. C.
Hsiao
, and
F. F.
Crim
,
J. Chem. Phys.
92
,
6333
(
1990
).
19.
A.
Sinha
,
M. C.
Hsiao
, and
F. F.
Crim
,
J. Chem. Phys.
94
,
4928
(
1991
).
20.
M. J.
Bronikowski
,
W. R.
Simpson
,
B.
Girard
, and
R. N.
Zare
,
J. Chem. Phys.
95
,
8647
(
1991
).
21.
M. J.
Bronikowski
,
W. R.
Simpson
, and
R. N.
Zare
,
J. Phys. Chem.
97
,
2194
(
1993
).
22.
A.
Sinha
,
J. D.
Thoemke
, and
F. F.
Crim
,
J. Chem. Phys.
96
,
372
(
1992
).
23.
R. D.
Guettler
,
G. C.
Jones
, Jr.
,
L. A.
Posey
, and
R. N.
Zare
,
Science
266
,
259
(
1994
).
24.
H. Fu. J.
Qian
,
R. J.
Green
, and
S. L.
Anderson
,
J. Chem. Phys.
108
,
2395
(
1998
).
25.
G.
Mauclair
,
M.
Heninger
,
S.
Fenistein
,
J.
Wronka
, and
R.
Marx
,
Int. J. Mass Spectrom. Ion Processes
80
,
99
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.