Precise values for the critical threshold for the three-dimensional “Swiss cheese” continuum percolation model have been calculated using extensive Monte Carlo simulations. These simulations used a growth algorithm and memory blocking scheme similar to what we used previously in three-dimensional lattice percolation. The simulations yield a value for the critical number density which confirms recent work but extends the precision by two significant figures.
REFERENCES
1.
2.
3.
I.
Balberg
, N.
Binenbaum
, and N.
Wagner
, Phys. Rev. Lett.
52
, 1465
(1984
).4.
N.
Provatas
, M.
Haataja
, J.
Asikainen
et al., Colloids Surf., A
165
, 209
(2000
).5.
6.
7.
8.
9.
10.
11.
12.
E. M.
Sevick
, P. A.
Monson
, and J. M.
Ottino
, J. Chem. Phys.
88
, 1198
(1988
).13.
14.
15.
16.
17.
18.
19.
20.
J.
Quintanilla
, S.
Torquato
, and R. M.
Ziff
, J. Phys. A
33
, L3991
(2000
).21.
22.
23.
24.
25.
M.
Rosso
, J. F.
Gouyet
, and B.
Sapoval
, Phys. Rev. Lett.
57
, 3195
(1986
).26.
27.
28.
D. F.
Holcomb
, M.
Iwasawa
, and F. D. K.
Roberts
, Biometrika
59
, 207
(1972
).29.
30.
31.
32.
33.
34.
J. G.
Saven
, J. L.
Skinner
, and J. R.
Wright
, J. Chem. Phys.
94
, 6153
(1991
).35.
36.
37.
C. D.
Lorenz
, R.
May
, and R. M.
Ziff
, J. Stat. Phys.
98
, 961
(2000
).38.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, revised 2nd ed. (Cambridge University Press, Cambridge, 1992).
39.
R. M.
Ziff
, P. T.
Cummings
, and G.
Stell
, J. Phys. A
17
, 3009
(1984
).40.
41.
D. Stauffer and A. Aharony, An Introduction to Percolation Theory, revised 2nd ed. (Taylor and Francis, London, 1994).
42.
R. M. Ziff and G. Stell, University of Michigan Report No. 88-4, 1988 (unpublished).
43.
H. G.
Ballesteros
, L. A.
Fernandez
, V.
Martin-Mayor
et al., J. Phys. A
32
, 1
(1999
).
This content is only available via PDF.
© 2001 American Institute of Physics.
2001
American Institute of Physics
You do not currently have access to this content.