Precise values for the critical threshold for the three-dimensional “Swiss cheese” continuum percolation model have been calculated using extensive Monte Carlo simulations. These simulations used a growth algorithm and memory blocking scheme similar to what we used previously in three-dimensional lattice percolation. The simulations yield a value for the critical number density nc=0.652 960±0.000 005, which confirms recent work but extends the precision by two significant figures.

1.
I.
Balberg
and
N.
Binenbaum
,
Phys. Rev. B
28
,
3799
(
1983
).
2.
A.
Dani
and
A. A.
Ogale
,
Comp. Sci. Technol.
56
,
911
(
1996
).
3.
I.
Balberg
,
N.
Binenbaum
, and
N.
Wagner
,
Phys. Rev. Lett.
52
,
1465
(
1984
).
4.
N.
Provatas
,
M.
Haataja
,
J.
Asikainen
et al.,
Colloids Surf., A
165
,
209
(
2000
).
5.
M.
Nakamura
,
Phys. Rev. A
34
,
3356
(
1986
).
6.
I.
Balberg
and
N.
Binenbaum
,
Phys. Rev. A
35
,
5174
(
1987
).
7.
S. B.
Lee
,
Phys. Rev. B
42
,
4877
(
1990
).
8.
S.
Fen
,
B. I.
Halperin
, and
P. N.
Sen
,
Phys. Rev. B
35
,
197
(
1987
).
9.
Y. C.
Chiew
,
J. Chem. Phys.
110
,
10482
(
1999
).
10.
J.
Quintanilla
and
S.
Torquato
,
J. Chem. Phys.
111
,
5947
(
1999
).
11.
M. D.
Rintoul
and
S.
Torquato
,
J. Chem. Phys.
105
,
9258
(
1996
).
12.
E. M.
Sevick
,
P. A.
Monson
, and
J. M.
Ottino
,
J. Chem. Phys.
88
,
1198
(
1988
).
13.
J.
Quintanilla
and
S.
Torquato
,
Phys. Rev. E
54
,
5331
(
1996
).
14.
I.
Balberg
and
N.
Binenbaum
,
Phys. Rev. A
31
,
1222
(
1985
).
15.
J.
Asikainen
and
T.
Ala-Nissila
,
Phys. Rev. E
61
,
5002
(
2000
).
16.
B.
Lorenz
,
I.
Orgzal
, and
H. O.
Heuer
,
J. Phys. A
26
,
4711
(
1993
).
17.
I.
Balberg
,
Phys. Rev. B
37
,
2391
(
1988
).
18.
V. L.
Nguyen
and
E.
Canessa
,
Mod. Phys. Lett. B
13
,
577
(
1999
).
19.
S. B.
Lee
and
S.
Torquato
,
Phys. Rev. A
41
,
5338
(
1990
).
20.
J.
Quintanilla
,
S.
Torquato
, and
R. M.
Ziff
,
J. Phys. A
33
,
L3991
(
2000
).
21.
M. D.
Rintoul
and
S.
Torquato
,
J. Phys. A
30
,
L585
(
1997
).
22.
E. T.
Gawlinski
and
H. E.
Stanley
,
J. Phys. A
14
,
L291
(
1981
).
23.
M.
Rosso
,
J. Phys. A
22
,
L131
(
1989
).
24.
J.
Kurkijärvi
,
Phys. Rev. B
9
,
770
(
1974
).
25.
M.
Rosso
,
J. F.
Gouyet
, and
B.
Sapoval
,
Phys. Rev. Lett.
57
,
3195
(
1986
).
26.
F. D. K.
Roberts
and
S. H.
Storey
,
Biometrika
55
,
258
(
1968
).
27.
C.
Domb
,
Biometrika
59
,
209
(
1972
).
28.
D. F.
Holcomb
,
M.
Iwasawa
, and
F. D. K.
Roberts
,
Biometrika
59
,
207
(
1972
).
29.
G. E.
Pike
and
C. H.
Seager
,
Phys. Rev. B
10
,
1421
(
1974
).
30.
J. P.
Gayda
and
H.
Ottavi
,
J. Phys. (Paris)
35
,
393
(
1974
).
31.
D. H.
Fremlin
,
J. Phys. (Paris)
37
,
813
(
1976
).
32.
S. W.
Haan
and
R.
Zwanzig
,
J. Phys. A
10
,
1547
(
1977
).
33.
Y. C.
Chiew
and
G.
Stell
,
J. Chem. Phys.
90
,
4956
(
1989
).
34.
J. G.
Saven
,
J. L.
Skinner
, and
J. R.
Wright
,
J. Chem. Phys.
94
,
6153
(
1991
).
35.
C. D.
Lorenz
and
R. M.
Ziff
,
Phys. Rev. E
57
,
230
(
1998
).
36.
C. D.
Lorenz
and
R. M.
Ziff
,
J. Phys. A
31
,
8147
(
1998
).
37.
C. D.
Lorenz
,
R.
May
, and
R. M.
Ziff
,
J. Stat. Phys.
98
,
961
(
2000
).
38.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, revised 2nd ed. (Cambridge University Press, Cambridge, 1992).
39.
R. M.
Ziff
,
P. T.
Cummings
, and
G.
Stell
,
J. Phys. A
17
,
3009
(
1984
).
40.
R. M.
Ziff
and
P. N.
Suding
,
J. Phys. A
30
,
5351
(
1997
).
41.
D. Stauffer and A. Aharony, An Introduction to Percolation Theory, revised 2nd ed. (Taylor and Francis, London, 1994).
42.
R. M. Ziff and G. Stell, University of Michigan Report No. 88-4, 1988 (unpublished).
43.
H. G.
Ballesteros
,
L. A.
Fernandez
,
V.
Martin-Mayor
et al.,
J. Phys. A
32
,
1
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.