The model system of parallel hard cubes is studied by using fundamental measure theory (FMT) and extensive Monte Carlo simulations. A continuous freezing transition occurs in this system to which finite-size scaling analysis is applied. Significant deviations from a previous simulation study are found for the position of the critical point and for the critical exponents. Our results are compatible with the Heisenberg universality class. Moreover, both theory and simulation show that also at high densities the solid phase is thermodynamically more stable than a possible columnar phase. FMT appears quantitatively more reliable at high densities than near the critical density, which is substantially underestimated.
REFERENCES
1.
2.
Y.
Rosenfeld
, M.
Schmidt
, H.
Löwen
, and P.
Tarazona
, Phys. Rev. E
55
, 4245
(1997
).3.
4.
J. A.
Cuesta
and Y.
Martı́nez-Ratón
, J. Chem. Phys.
107
, 6379
(1997
).5.
6.
Y.
Martı́nez-Ratón
and J. A.
Cuesta
, J. Chem. Phys.
111
, 317
(1999
).7.
8.
9.
10.
11.
B. Groh and M. Schmidt, J. Chem. Phys. (to be published).
12.
13.
14.
15.
16.
17.
M.
Gibson
, D.
Swanson
, C.
Eckhardt
, and X.
Zeng
, J. Chem. Phys.
106
, 1961
(1997
).18.
19.
20.
21.
S. K. Ma, Modern Theory of Critical Phenomena, Frontiers in Physics, Vol. 46 (Benjamin, Reading, MA, 1976).
22.
H.
Kleinert
, S.
Thoms
, and V.
Schulte-Frohlinde
, Phys. Rev. B
56
, 14428
(1997
).23.
24.
D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, San Diego, CA, 1996).
25.
26.
B. Dünweg, in Monte Carlo and Molecular Dynamics of Condensed Matter Systems, Italian Physical Society, edited by K. Binder and G. Ciccotti (Editrice Compositori, Bologna, 1995), pp. 215–254.
27.
A.
Ferrenberg
and R.
Swendsen
, Phys. Rev. Lett.
63
, 1195
(1989
).28.
29.
30.
R.
Hentschke
, M.
Taylor
, and J.
Herzfeld
, Phys. Rev. A
40
, 1678
(1989
).31.
32.
This content is only available via PDF.
© 2001 American Institute of Physics.
2001
American Institute of Physics
You do not currently have access to this content.