A molecular dynamics (MD) simulation, based on a realistic atom–atom interaction potential, was performed on 4-n-pentyl-4-cyanobiphenyl (5CB) in the nematic phase. The analysis of the trajectory was focused on the determination of molecular structure and orientational ordering using nuclear dipole–dipole couplings. Three sets of couplings were calculated: C1313C,C131H, and H11H. These dipolar couplings were used for investigation of the biphenyl and the ring–chain fragments in 5CB. The models employed in the analysis were based on the rotational isomeric state (RIS) approximation and the maximum entropy (ME) approach. The main questions addressed in this article are: (i) How sensitive are the various sets of dipolar couplings to the long-range orientational order and molecular conformation? (ii) Which model predicts a molecular structure that is in best agreement with the true conformation? Computer simulation is an attractive method to address these questions since the answer is provided: we know the true orientational order and the molecular structure. We found that all sets of dipolar couplings analyzed using the two models predict correct orientational order for the biphenyl fragment. The structure of this moiety was unambiguously determined in all analyses except for the ME method applied on the C1313C couplings. The RIS approximation failed to discriminate between a large range of possible structures of the ring–chain fragment.

1.
J. W. Emsley, in Encyclopedia of NMR, edited by D. M. Grant and R. K. Harris (Wiley, New York, 1996), p. 2781.
2.
K. Schmidt-Rohr and H. W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic, London, 1994).
3.
R. Y. Dong, Nuclear Magnetic Resonance of Liquid Crystals (Springer, New York, 1994).
4.
J. W. Emsley and J. C. Lindon, NMR Spectroscopy Using Liquid Crystal Solvents (Pergamon, Oxford, 1975).
5.
B. M.
Fung
,
K.
Ermolaev
, and
Y.
Yu
,
J. Magn. Reson.
138
,
28
(
1999
).
6.
D.
Sandström
,
K. T.
Summanen
, and
M. H.
Levitt
,
J. Am. Chem. Soc.
116
,
9357
(
1994
).
7.
D.
Sandström
and
M. H.
Levitt
,
J. Am. Chem. Soc.
118
,
6966
(
1996
).
8.
M.
Gochin
,
K. V.
Schenker
,
H.
Zimmermann
, and
A.
Pines
,
J. Am. Chem. Soc.
108
,
6813
(
1986
).
9.
J. W.
Emsley
,
G. R.
Luckhurst
, and
C. P.
Stockley
,
Mol. Phys.
44
,
565
(
1981
).
10.
S.
Sinton
and
A.
Pines
,
Chem. Phys. Lett.
76
,
263
(
1980
).
11.
N.
Tjandra
and
A.
Bax
,
Science
278
,
1111
(
1997
).
12.
N.
Tjandra
,
J. G.
Omichinski
,
A. M.
Gronenborn
,
G. M.
Clore
, and
A.
Bax
,
Nature Struct. Biol.
4
,
732
(
1997
).
13.
T.
Rundlöf
,
C.
Landersjö
,
K.
Lycknert
,
A.
Maliniak
, and
G.
Widmalm
,
Magn. Reson. Chem.
36
,
773
(
1998
).
14.
P. J.
Bolon
and
J. H.
Prestegard
,
J. Am. Chem. Soc.
120
,
9366
(
1998
).
15.
M. P.
Allen
and
M. R.
Wilson
,
J. Comput.-Aided Mol. Des.
3
,
335
(
1989
).
16.
A. V.
Komolkin
,
A.
Laaksonen
, and
A.
Maliniak
,
J. Chem. Phys.
101
,
4103
(
1994
).
17.
D.
Sandström
,
A. V.
Komolkin
, and
A.
Maliniak
,
J. Chem. Phys.
104
,
9620
(
1996
).
18.
D.
Sandström
,
A. V.
Komolkin
, and
A.
Maliniak
,
J. Chem. Phys.
106
,
7438
(
1997
).
19.
H.
Gerard
,
J.
Avalos
,
D.
Galland
, and
F.
Volino
,
Liq. Cryst.
12
,
649
(
1992
).
20.
D.
Catalano
,
L.
Di Bari
,
C. A.
Veracini
,
G. N.
Shilstone
, and
C.
Zannoni
,
J. Chem. Phys.
94
,
3928
(
1991
).
21.
J.
Alejandre
,
J. W.
Emsley
,
D. J.
Tildesley
, and
P.
Carlson
,
J. Chem. Phys.
101
,
7027
(
1994
).
22.
W. E.
Palke
,
D.
Catalano
,
G.
Celebre
, and
J. W.
Emsley
,
J. Chem. Phys.
105
,
7026
(
1996
).
23.
D.
Catalano
,
J. W.
Emsley
,
G.
La Penna
, and
C. A.
Veracini
,
J. Chem. Phys.
105
,
10595
(
1996
).
24.
G.
La Penna
,
E. K.
Foord
,
J. W.
Emsley
, and
D. J.
Tildesley
,
J. Chem. Phys.
104
,
233
(
1996
).
25.
J. W.
Emsley
,
G.
De Luca
,
G.
Celebre
, and
M.
Longeri
,
Liq. Cryst.
20
,
569
(
1996
).
26.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
27.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1989).
28.
J. W.
Emsley
,
T. J.
Horne
,
H.
Zimmermann
,
G.
Celebre
, and
M.
Longeri
,
Liq. Cryst.
7
,
1
(
1990
).
29.
J.-P.
Ryckaert
and
A.
Bellemans
,
Chem. Phys. Lett.
30
,
123
(
1975
).
30.
A. V. Komolkin (unpublished).
31.
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).
32.
S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1992).
33.
R.
Eppenga
and
D.
Frenkel
,
Mol. Phys.
52
,
1303
(
1984
).
34.
C. B.
Frech
,
B. M.
Fung
, and
M.
Schadt
,
Liq. Cryst. Chem. Phys. Appl.
1080
,
215
(
1989
).
35.
C. Zannoni, in Nuclear Magnetic Resonance of Liquid Crystals, edited by J. W. Emsley (Reidel, Dordrecht, 1985), p. 1.
36.
J. P. Chandler, STEPIT (Program No. 307), QCPE, Chemistry Department, Indiana University, Bloomington, IN (1982).
37.
J. W.
Emsley
,
G.
Celebre
,
G. De
Luca
,
M.
Longeri
, and
F.
Lucchesini
,
Liq. Cryst.
16
,
1037
(
1994
).
38.
G.
Celebre
,
G.
De Luca
,
M.
Longeri
,
D.
Catalano
,
M.
Lumetti
, and
J. W.
Emsley
,
Mol. Phys.
85
,
221
(
1995
).
39.
W.
Caminati
,
D.
Damiani
,
G.
Corbelli
,
B.
Velino
, and
C. W.
Bock
,
Mol. Phys.
74
,
885
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.