In this communication we present the exact, local, one-electron, second-order correlation potential for molecules, for use in density functional studies. The correlation potential is represented in a basis set, and when combined with the exact exchange potential, it provides an exchange–correlation potential that is derived exclusively from exact, orbital-dependent expressions. In this sense, such potentials provide an ab initio density functional theory (DFT) that permits convergence to the exact answer as higher order terms are introduced, just as is the case for ab initio correlated methods. Furthermore, this potential includes some dispersion effects that are missing from other DFT potentials.

1.
J. D.
Talman
and
W. F.
Shawwick
,
Phys. Rev. A
14
,
36
(
1976
).
2.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
,
Phys. Rev. A
45
,
101
(
1992
).
3.
M.
Städele
,
J. A.
Majewski
,
P.
Vogl
, and
A.
Görling
,
Phys. Rev. Lett.
7
,
2089
(
1997
).
4.
S.
Ivanov
,
S.
Hirata
, and
R. J.
Bartlett
,
Phys. Rev. Lett.
83
,
5455
(
1999
).
5.
A.
Görling
,
Phys. Rev. Lett.
83
,
5459
(
1999
).
6.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
7.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989), and references therein.
8.
R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, Berlin, 1990), and references therein.
9.
T. Grabo, T. Kreibich, S. Kurth, and E. K. U. Gross, in The Strong Coulomb Correlations and Electronic Structure Calculations: Beyond Local Density Approximations, edited by V. Asimov (Gordon and Breach, Amsterdam, 1999).
10.
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
,
Phys. Rev. A
46
,
5453
(
1992
),
J. B.
Krieger
,
Y.
Li
, and
G. J.
Iafrate
, and in
Density Functional Theory
, edited by
E. K. U.
Gross
and
,
R. M.
Dreizler
[
NATO ASI, Ser. B
337
,
1995
].
11.
R. J. Bartlett, in Chemistry for the 21st Century, edited by E. Keinan and Schechter (Wiley VCH, Weinheim, 2000).
12.
C. J.
Umrigar
and
X.
Gonze
,
Phys. Rev. A
50
,
3827
(
1994
).
13.
S.
Ivanov
,
R.
Lopez-Boada
,
A.
Görling
, and
M.
Levy
,
J. Chem. Phys.
109
,
6280
(
1998
).
14.
S.
Ivanov
,
K.
Burke
, and
M.
Levy
,
J. Chem. Phys.
110
,
10262
(
1999
).
15.
S.
Ivanov
and
R. J.
Bartlett
,
Chem. Phys. Lett.
308
,
449
(
1999
).
16.
R. J. Bartlett, in Modern Electronic Structure Theory, edited by D. R. Yarkony (World Scientific, Singapore, 1995).
17.
A.
Görling
and
M.
Levy
,
Phys. Rev. B
47
,
13105
(
1993
).
For a review of Görling–Levy perturbation theory see M. Levy, S. Ivanov, and A. Görling, in Electronic Density Functional Theory: Recent Progress and New Directions, edited by J. F. Dobson, G. Vignale, and M. P. Das (Plenum, New York, 1998).
18.
A.
Görling
and
M.
Levy
,
Int. J. Quantum Chem.
29
,
93
(
1995
);
M.
Levy
and
A.
Görling
,
Phys. Rev. A
51
,
2851
(
1995
).
19.
S.
Liu
and
R. G.
Parr
,
Phys. Rev. A
53
,
2211
(
1996
).
20.
M.
Levy
and
J. P.
Perdew
,
Phys. Rev. A
32
,
2010
(
1985
).
21.
S.
Ivanov
and
M.
Levy
,
J. Phys. Chem.
102
,
3151
(
1998
);
S.
Ivanov
and
M.
Levy
,
Theor. Chem. Acc.
103
,
117
(
1999
).
22.
D. C.
Langreth
and
J. P.
Perdew
,
Solid State Commun.
17
,
1425
(
1975
).
23.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
24.
M.
Levy
,
Phys. Rev. A
43
,
4637
(
1991
), and references therein.
25.
M.
Levy
,
Proc. Natl. Acad. Sci. U.S.A.
76
,
6062
(
1979
);
M.
Levy
,
Bull. Am. Phys. Soc.
24
,
626
(
1979
).
26.
M.
Levy
,
Phys. Rev. A
26
,
1200
(
1982
).
27.
X.
Gonze
and
M.
Scheffler
,
Phys. Rev. Lett.
82
,
4416
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.