The lowest excited triplet (T1) states of diphenylacetylene and several α,ω-diphenylpolyynes (DPY) having two, three, four and six triple bonds were studied using continuous wave time-resolved electron paramagnetic resonance (CW-TREPR), pulsed EPR, and phosphorescence spectroscopy. Linear and planar molecular structures in the T1 states of DPY were suggested from the magnetophotoselection experiments and observation of a strong 0-0 band in the well-resolved phosphorescence spectra. The spin density distributions, which were obtained by electron spin echo envelope modulation measurements and semi-empirical molecular orbital calculations, and the phosphorescence polarization normal to the long axis of molecule for the 0-0 bands suggested that the T1 states of DPY have a B1u3xπx*) electronic configuration. DPY showed an abnormally large |D| value of the zero-field splitting parameters that increased with increasing molecular size. Such an unusual behavior of the D values is interpreted in terms of the spin-orbit interaction between the T1 and Au3xπy*) states mainly due to their energy proximity which is probably characteristic of the excited states for the polyynes. The estimated energy gap between the πx3πy* and πx3πx* states for DPY ranges from 2900 cm−1 to 1400 cm−1. There existed a good correlation between the acceleration of the nonradiative decay rate constant from the T1 state and appearance of a ring twisting vibronic band with b1g symmetry in the phosphorescence spectra for DPY. Therefore, we concluded that the vibronic interaction between the πx3πy* and πx3πx* states promoted by the b1g vibration leads to a broadening of the potential surface of the T1 state which results in the fast radiationless decay to the ground state.

1.
(a)
Y.
Yamaguchi
,
G.
Vacek
,
J. R.
Thomas
,
B. J.
DeLeeuw
, and
H. F. J.
Schaefer
 III
,
Chem. Phys.
100
,
4969
(
1994
);
(b)
J. F.
Stanton
,
C.
Huang
, and
P. G.
Szalay
,
J. Chem. Phys.
101
,
356
(
1994
);
(c)
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
101
,
3001
(
1994
);
(d)
T.
Suzuki
,
Y.
Shi
, and
H.
Kohguchi
,
J. Chem. Phys.
106
,
5292
(
1997
);
(e)
T.
Ishibashi
and
H.
Hamaguchi
,
J. Phys. Chem. A
102
,
2263
(
1998
).
2.
(a)
C.
Sauteret
,
J.-P.
Hermann
,
R.
Frey
,
F.
Pradère
,
J.
Ducuing
,
R. H.
Baughman
, and
R. R.
Chance
,
Phys. Rev. Lett.
36
,
956
(
1976
);
(b) J. Zyss, Ed., Molecular Nonlinear Optics Materials, Physics, and Devices (Academic, San Diego, CA, 1994);
(c)
H.
Nakanishi
,
H.
Matsuda
,
S.
Okada
, and
M.
Kato
,
Polym. Adv. Technol.
1
,
75
(
1990
).
3.
H. Sixl, Advances in Polymer Science, Vol. 63, edited by H.-J. Cantow (Springer-Verlag, Berlin, 1984), p. 49.
4.
(a)
A.
Mavridis
and
I.
Moustakali-Mavridis
,
Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem.
33
,
3612
(
1977
);
(b)
A. V.
Abramenkov
,
A.
Almenningen
,
B. N.
Cyvin
,
S. J.
Cyvin
,
T.
Jonvik
,
L. S.
Khaikin
,
C.
Römming
, and
L. V.
Vilkov
,
Acta Chem. Scand.
A42
,
674
(
1988
);
(c)
E. H.
Wiebenga
,
Z. Kristallogr.
102
,
193
(
1940
).
5.
(a)
H.
Hiura
and
H.
Takahashi
,
J. Phys. Chem.
96
,
8909
(
1992
);
(b)
H.
Yoneda
,
H.
Hiura
, and
H.
Takahashi
,
J. Mol. Struct.
301
,
47
(
1993
).
6.
J.
Higuchi
,
T.
Ito
, and
O.
Kanehisa
,
Chem. Phys. Lett.
23
,
440
(
1973
).
7.
Y.
Nagano
,
T.
Ikoma
,
K.
Akiyama
, and
S.
Tero-Kubota
,
J. Phys. Chem. A
102
,
5769
(
1998
).
8.
M.
Beer
,
J. Phys. Chem.
25
,
745
(
1956
).
9.
Y.
Nagano
,
T.
Ikoma
,
K.
Akiyama
, and
S.
Tero-Kubota
,
Chem. Phys. Lett.
303
,
201
(
1999
).
10.
(a)
N.
Hirota
,
S.
Yamauchi
, and
M.
Terajima
,
Rev. Chem. Intermed.
8
,
189
(
1987
);
(b)
T.
Ikoma
,
K.
Akiyama
,
S.
Tero-Kubota
, and
Y.
Ikegami
,
J. Phys. Chem. A
102
,
446
(
1998
).
11.
(a)
T.-S.
Lin
,
Chem. Rev.
84
,
1
(
1984
);
(b)
W. J.
Buma
,
E. J. J.
Groenen
,
J.
Schmidt
, and
R.
de Beer
,
J. Chem. Phys.
91
,
6549
(
1989
);
(c)
M.
Ros
and
E. J. J.
Groenen
,
J. Chem. Phys.
94
,
7640
(
1991
);
(d)
M.
Ros
,
M. A.
Hogenboom
,
P.
Kok
, and
E. J. J.
Groenen
,
J. Phys. Chem.
96
,
2975
(
1992
).
12.
L. Brandsma, Preparative Acetylenic Chemistry (Elsevier, New York, 1971), pp. 95 and 156.
13.
S.
Tero-Kubota
,
K.
Akiyama
,
T.
Ikoma
, and
Y.
Ikegami
,
J. Phys. Chem.
95
,
766
(
1991
).
14.
T.
Azumi
and
S. P.
McGlynn
,
J. Chem. Phys.
37
,
2413
(
1962
).
15.
R. E.
Kellogg
and
R. G.
Bennett
,
J. Chem. Phys.
41
,
3042
(
1964
).
16.
J. B. Birks, Photophysics of Aromatic Molecules (Wiley, London, 1970), Chap. 6.
17.
T.
Ikoma
,
K.
Akiyama
, and
S.
Tero-Kubota
,
Mol. Phys.
96
,
813
(
1999
).
18.
(a)
E. W.
Thulstrup
and
J.
Michl
,
J. Am. Chem. Soc.
104
,
5594
(
1982
);
(b)
T.
Hoshi
,
K.
Ota
,
J.
Yoshino
,
K.
Murofushi
, and
Y.
Tanizaki
,
Chem. Lett.
357
(
1977
);
(c)
T.
Hoshi
,
J.
Okubo
,
M.
Kobayashi
, and
Y.
Tanizaki
,
J. Am. Chem. Soc.
108
,
3867
(
1986
);
(d)
M.
Kobayashi
,
T.
Hoshi
,
J.
Okubo
,
H.
Hiratsuka
,
T.
Harazono
,
M.
Nakagawa
, and
Y.
Tanizaki
,
Bull. Chem. Soc. Jpn.
57
,
2905
(
1984
).
19.
P.
Kottis
and
R.
Lefebvre
,
J. Chem. Phys.
41
,
379
(
1964
).
20.
N. M. Atherton, Principle of Electron Spin Resonance (Ellis Horwood, England, 1993), Chap. 11.
21.
S. A. Dikanov and Y. D. Tsvetkov, Electron Spin Echo Envelope Modulation Spectroscopy (CRC, Florida, 1992).
22.
These spectra are sharper than those obtained in a methylcyclohexane glassy matrix reported previously in Ref. 7. There are two reasons of this resolution enhancement. We can measure the three-pulse ESEEM for long time (∼20 μs) because of the long spin-lattice relaxation times in the deuterated solvent. Signal overlaps around the free proton frequency H) are avoided due to the large shift of the strong matrix line by employing the deuterated solvent.
23.
Y. Ohba, S. Kawata, M. Satoh, H. Yokoi, and M. Iwaizumi, Electron Magnetic Resonance of Disordered Systems, edited by N. D. Yordanov (World Scientific, Singapore, 1991), p. 175. At one of the canonical fields (Bi), the spin functions for the highest (|+〉) and lowest (|−〉) sublevels are expanded by the spin functions under infinite field as like |+〉=cos θi|T+1〉+sin θi|T−1〉,|−〉=−sin θi|T+1〉+cos θi|T−1 and tan 2θi=(Djj−Dkk)/2gμBB0.
24.
H.
Singh
and
J. D.
Laposa
,
J. Lumin.
3
,
287
(
1971
).
25.
(a)
G.
Baranovic
,
L.
Colombo
, and
D.
Skare
,
J. Mol. Struct.
147
,
275
(
1986
);
(b)
A.
Shimojima
and
H.
Takahashi
,
J. Phys. Chem.
97
,
9103
(
1993
);
(c)
G.
Baranovic
,
L.
Colombo
,
K.
Furic
,
J. R.
Durig
,
J. F.
Sullivan
, and
J.
Mink
,
J. Mol. Struct.
144
,
53
(
1986
).
26.
G. Herzberg, in Molecular Spectra and Molecular Structure 3, Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966), Chap. 2.
27.
R.
Shimada
and
L.
Goodman
,
J. Chem. Phys.
43
,
2027
(
1965
).
28.
The φr0 for Cz and coronene were calculated to be 1.00 and 0.18, respectively, from the literature;
J. E.
Adams
,
W. W.
Mantulin
, and
J. R.
Huber
,
J. Am. Chem. Soc.
95
,
5477
(
1973
); and
W. R.
Dawson
and
J. L.
Kropp
,
J. Phys. Chem.
73
,
693
(
1969
).
29.
N. M. Atherton, Principle of Electron Spin Resonance (Ellis Harwood, England, 1993), Chap. 5, Sec. 5.2.
30.
J. A. Weil, J. R. Bolton, and J. E. Wertz, Electron Paramagnetic Resonance (Wiley, New York, 1994), Chap. 5, Sec. 5.3.
31.
R. H.
Clarke
and
C. A.
Hutchison
, Jr.
,
J. Chem. Phys.
54
,
2962
(
1971
).
32.
J. J. P.
Stewart
,
QCPE Bull.
9
,
10
(
1989
). The program for the AM1 calculations is included in the CERIUS2 ver. 2.0 software produced from BIOSIM Molecular Simulations.
33.
J.
Higuchi
,
Bull. Chem. Soc. Jpn.
54
,
2864
(
1981
).
34.
E.
Clementi
, “
Tables of Atomic Functions
,”
Supplement to IBM J. Res. Dev.
9
,
2
(
1965
), Table 45-01.
35.
S. P. McGlynn, T. Azumi, and M. Kinoshita, Molecular Spectroscopy of the Triplet State (Prentice-Hall, New Jersey, 1969), Chap. 9.
36.
Handbook of Photochemistry, edited by N. M. Atherton, S. L. Murov, I. Carmichael, and G. L. Hug (Dekker, New York, 1993), Chap. 16.
37.
W.
Siebrand
,
J. Chem. Phys.
47
,
2411
(
1967
).
38.
(a)
G. W.
Robinson
and
R. P.
Frosch
,
J. Chem. Phys.
37
,
1962
(
1962
);
G. W.
Robinson
and
R. P.
Frosch
, (b)
J. Chem. Phys.
38
,
1187
(
1963
).
39.
R.
Englman
and
J.
Jortner
,
Mol. Phys.
18
,
145
(
1970
).
40.
J. P.
Byme
,
E. F.
McCoy
, and
I. G.
Ross
,
Aust. J. Chem.
18
,
1589
(
1965
).
41.
E. C.
Lim
,
J. Phys. Chem.
90
,
6770
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.