In a previous paper [S. Iwai et al., J. Chem. Phys. 112, 7111 (2000)] we have found ultrafast electron transfer (ET) which occurs between donor and acceptor molecules at short distances. We incorporate this ultrafast ET in the calculation of the second-order ET rate in order to explain the discrepancies between experimental [D. Rehm and A. Weller, Isr. J. Chem. 8, 259 (1970)] and theoretical [M. Tachiya and S. Murata, J. Phys. Chem. 96, 8441 (1992)] ET rates. The effect of the short-distance ET is significant in the Marcus normal region where the Marcus-type ET is not very fast. Compared to the case where the original Marcus equation is used as the first-order ET rate, the calculated second-order rate is found to increase by several orders of magnitude in the normal region. Thus the discrepancy between theory and experiment is potentially resolved and the importance of the short-distance ET in fluorescence quenching demonstrated.

1.
A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
2.
A.
Marcus
,
Annu. Rev. Phys. Chem.
15
,
155
(
1964
).
3.
J. R.
Miller
,
L. T.
Calcaterra
, and
G. L.
Closs
,
J. Am. Chem. Soc.
106
,
3047
(
1984
).
4.
N.
Mataga
,
T.
Asahi
,
Y.
Kanda
,
T.
Okada
, and
T.
Kakitani
,
Chem. Phys.
127
,
249
(
1988
).
5.
D. M.
Guldi
and
K. D.
Asmus
,
J. Am. Chem. Soc.
119
,
5744
(
1997
).
6.
D.
Rehm
and
A.
Weller
,
Isr. J. Chem.
8
,
259
(
1970
).
7.
M.
Tachiya
and
S.
Murata
,
J. Phys. Chem.
96
,
8441
(
1992
).
8.
R. A.
Marcus
and
P.
Siders
,
J. Phys. Chem.
86
,
622
(
1982
).
9.
B. S.
Brunschwig
,
S.
Ehrenson
, and
N.
Sutin
,
J. Am. Chem. Soc.
106
,
6858
(
1984
).
10.
N.
Matsuda
,
T.
Kakitani
,
T.
Denda
, and
N.
Mataga
,
Chem. Phys.
190
,
83
(
1995
).
11.
S.
Iwai
,
S.
Murata
, and
M.
Tachiya
,
J. Chem. Phys.
109
,
5963
(
1998
).
12.
S.
Iwai
,
S.
Murata
,
R.
Katoh
,
M.
Tachiya
,
K.
Kikuchi
, and
Y.
Takahashi
,
J. Chem. Phys.
112
,
7111
(
2000
).
13.
S.
Murata
,
S.
Matsuzaki
, and
M.
Tachiya
,
J. Phys. Chem.
99
,
5354
(
1995
).
14.
S.
Murata
and
M.
Tachiya
,
J. Phys. Chem.
100
,
4064
(
1996
).
15.
L.
Burel
,
M.
Mostafavi
,
S.
Murata
, and
M.
Tachiya
,
J. Phys. Chem.
103
,
5882
(
1999
).
16.
G.
Wilemski
and
M.
Fixman
,
J. Chem. Phys.
58
,
4009
(
1973
);
G.
Wilemski
and
M.
Fixman
,
J. Chem. Phys.
60
,
868
(
1974
);
G.
Wilemski
and
M.
Fixman
,
J. Chem. Phys.
60
,
874
(
1974
).
17.
J. R.
Miller
,
J. V.
Beitz
, and
K.
Huddleston
,
J. Am. Chem. Soc.
106
,
5064
(
1984
).
18.
R. P.
Van Duyne
and
S. F.
Fisher
,
Chem. Phys.
5
,
193
(
1974
).
19.
Equation (3) in the previous paper (Ref. 12) is incorrect. The correct equation is expressed as
Therefore, the −ΔE values calculated from Eq. (3) and listed in Table I are also incorrect (CA–DMA: 0.64 eV, DCA–DMA: 1.09 eV, TCA–DMA: 1.47 eV, CA–ANL: 0.36 eV, DCA–ANL: 0.87 eV, TCA–ANL: 1.17 eV). The correct values of −ΔE for CA–DMA, DCA–DMA, TCA–DMA, and CA–ANL, DCA–ANL, TCA–ANL are 0.64, 1.14, 1.51, 0.48, 0.97, and 1.35 eV, respectively. These −ΔE values correspond to −ΔG (in acetonitrile)=−0.76, −1.26, −1.63, −0.48, −0.98, −1.35 eV, respectively.
20.
K.
Kikuchi
,
T.
Niwa
,
Y.
Takahashi
,
H.
Ikeda
,
T.
Miyashi
, and
M.
Hoshi
,
Chem. Phys. Lett.
173
,
421
(
1990
);
K.
Kikuchi
,
Y.
Takahashi
,
M.
Hoshi
,
T.
Niwa
,
T.
Katagiri
, and
T.
Miyashi
,
J. Phys. Chem.
95
,
2378
(
1991
).
21.
M.
Tachiya
,
J. Phys. Chem.
97
,
5911
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.